ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunirn GIF version

Theorem elunirn 5745
Description: Membership in the union of the range of a function. (Contributed by NM, 24-Sep-2006.)
Assertion
Ref Expression
elunirn (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem elunirn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 3799 . 2 (𝐴 ran 𝐹 ↔ ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹))
2 funfn 5228 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
3 fvelrnb 5544 . . . . . . . 8 (𝐹 Fn dom 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
42, 3sylbi 120 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
54anbi2d 461 . . . . . 6 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ (𝐴𝑦 ∧ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦)))
6 r19.42v 2627 . . . . . 6 (∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) ↔ (𝐴𝑦 ∧ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
75, 6bitr4di 197 . . . . 5 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ ∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦)))
8 eleq2 2234 . . . . . . 7 ((𝐹𝑥) = 𝑦 → (𝐴 ∈ (𝐹𝑥) ↔ 𝐴𝑦))
98biimparc 297 . . . . . 6 ((𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) → 𝐴 ∈ (𝐹𝑥))
109reximi 2567 . . . . 5 (∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥))
117, 10syl6bi 162 . . . 4 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
1211exlimdv 1812 . . 3 (Fun 𝐹 → (∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
13 fvelrn 5627 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
14 funfvex 5513 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
15 eleq2 2234 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝐴𝑦𝐴 ∈ (𝐹𝑥)))
16 eleq1 2233 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
1715, 16anbi12d 470 . . . . . . 7 (𝑦 = (𝐹𝑥) → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ (𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹)))
1817spcegv 2818 . . . . . 6 ((𝐹𝑥) ∈ V → ((𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
1914, 18syl 14 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2013, 19mpan2d 426 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2120rexlimdva 2587 . . 3 (Fun 𝐹 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2212, 21impbid 128 . 2 (Fun 𝐹 → (∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹) ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
231, 22syl5bb 191 1 (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  wrex 2449  Vcvv 2730   cuni 3796  dom cdm 4611  ran crn 4612  Fun wfun 5192   Fn wfn 5193  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  fnunirn  5746
  Copyright terms: Public domain W3C validator