ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsnss GIF version

Theorem difprsnss 3575
Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difprsnss ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵}

Proof of Theorem difprsnss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2622 . . . . 5 𝑥 ∈ V
21elpr 3467 . . . 4 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
3 velsn 3463 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
43notbii 629 . . . 4 𝑥 ∈ {𝐴} ↔ ¬ 𝑥 = 𝐴)
5 biorf 698 . . . . 5 𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ (𝑥 = 𝐴𝑥 = 𝐵)))
65biimparc 293 . . . 4 (((𝑥 = 𝐴𝑥 = 𝐵) ∧ ¬ 𝑥 = 𝐴) → 𝑥 = 𝐵)
72, 4, 6syl2anb 285 . . 3 ((𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴}) → 𝑥 = 𝐵)
8 eldif 3008 . . 3 (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ↔ (𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴}))
9 velsn 3463 . . 3 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
107, 8, 93imtr4i 199 . 2 (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) → 𝑥 ∈ {𝐵})
1110ssriv 3029 1 ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wo 664   = wceq 1289  wcel 1438  cdif 2996  wss 2999  {csn 3446  {cpr 3447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-sn 3452  df-pr 3453
This theorem is referenced by:  en2other2  6820
  Copyright terms: Public domain W3C validator