| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difprsnss | GIF version | ||
| Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| difprsnss | ⊢ ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2782 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpr 3667 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
| 3 | velsn 3663 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 4 | 3 | notbii 672 | . . . 4 ⊢ (¬ 𝑥 ∈ {𝐴} ↔ ¬ 𝑥 = 𝐴) |
| 5 | biorf 748 | . . . . 5 ⊢ (¬ 𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵))) | |
| 6 | 5 | biimparc 299 | . . . 4 ⊢ (((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ∧ ¬ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
| 7 | 2, 4, 6 | syl2anb 291 | . . 3 ⊢ ((𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴}) → 𝑥 = 𝐵) |
| 8 | eldif 3186 | . . 3 ⊢ (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ↔ (𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴})) | |
| 9 | velsn 3663 | . . 3 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 10 | 7, 8, 9 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) → 𝑥 ∈ {𝐵}) |
| 11 | 10 | ssriv 3208 | 1 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 712 = wceq 1375 ∈ wcel 2180 ∖ cdif 3174 ⊆ wss 3177 {csn 3646 {cpr 3647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 |
| This theorem is referenced by: en2other2 7342 |
| Copyright terms: Public domain | W3C validator |