| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > difprsnss | GIF version | ||
| Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| difprsnss | ⊢ ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpr 3643 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | 
| 3 | velsn 3639 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 4 | 3 | notbii 669 | . . . 4 ⊢ (¬ 𝑥 ∈ {𝐴} ↔ ¬ 𝑥 = 𝐴) | 
| 5 | biorf 745 | . . . . 5 ⊢ (¬ 𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵))) | |
| 6 | 5 | biimparc 299 | . . . 4 ⊢ (((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ∧ ¬ 𝑥 = 𝐴) → 𝑥 = 𝐵) | 
| 7 | 2, 4, 6 | syl2anb 291 | . . 3 ⊢ ((𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴}) → 𝑥 = 𝐵) | 
| 8 | eldif 3166 | . . 3 ⊢ (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ↔ (𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴})) | |
| 9 | velsn 3639 | . . 3 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 10 | 7, 8, 9 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) → 𝑥 ∈ {𝐵}) | 
| 11 | 10 | ssriv 3187 | 1 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵} | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∖ cdif 3154 ⊆ wss 3157 {csn 3622 {cpr 3623 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: en2other2 7263 | 
| Copyright terms: Public domain | W3C validator |