![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elreal2 | GIF version |
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) |
Ref | Expression |
---|---|
elreal2 | ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 7360 | . . 3 ⊢ ℝ = (R × {0R}) | |
2 | 1 | eleq2i 2154 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
3 | xp1st 5936 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → (1st ‘𝐴) ∈ R) | |
4 | 1st2nd2 5945 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
5 | xp2nd 5937 | . . . . . . 7 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) ∈ {0R}) | |
6 | elsni 3464 | . . . . . . 7 ⊢ ((2nd ‘𝐴) ∈ {0R} → (2nd ‘𝐴) = 0R) | |
7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) = 0R) |
8 | 7 | opeq2d 3629 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐴), 0R〉) |
9 | 4, 8 | eqtrd 2120 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = 〈(1st ‘𝐴), 0R〉) |
10 | 3, 9 | jca 300 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) → ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
11 | eleq1 2150 | . . . . 5 ⊢ (𝐴 = 〈(1st ‘𝐴), 0R〉 → (𝐴 ∈ (R × {0R}) ↔ 〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}))) | |
12 | 0r 7296 | . . . . . . . 8 ⊢ 0R ∈ R | |
13 | 12 | elexi 2631 | . . . . . . 7 ⊢ 0R ∈ V |
14 | 13 | snid 3475 | . . . . . 6 ⊢ 0R ∈ {0R} |
15 | opelxp 4467 | . . . . . 6 ⊢ (〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 0R ∈ {0R})) | |
16 | 14, 15 | mpbiran2 887 | . . . . 5 ⊢ (〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R) |
17 | 11, 16 | syl6bb 194 | . . . 4 ⊢ (𝐴 = 〈(1st ‘𝐴), 0R〉 → (𝐴 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R)) |
18 | 17 | biimparc 293 | . . 3 ⊢ (((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉) → 𝐴 ∈ (R × {0R})) |
19 | 10, 18 | impbii 124 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
20 | 2, 19 | bitri 182 | 1 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 = wceq 1289 ∈ wcel 1438 {csn 3446 〈cop 3449 × cxp 4436 ‘cfv 5015 1st c1st 5909 2nd c2nd 5910 Rcnr 6856 0Rc0r 6857 ℝcr 7349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-eprel 4116 df-id 4120 df-po 4123 df-iso 4124 df-iord 4193 df-on 4195 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-recs 6070 df-irdg 6135 df-1o 6181 df-oadd 6185 df-omul 6186 df-er 6292 df-ec 6294 df-qs 6298 df-ni 6863 df-pli 6864 df-mi 6865 df-lti 6866 df-plpq 6903 df-mpq 6904 df-enq 6906 df-nqqs 6907 df-plqqs 6908 df-mqqs 6909 df-1nqqs 6910 df-rq 6911 df-ltnqqs 6912 df-inp 7025 df-i1p 7026 df-enr 7272 df-nr 7273 df-0r 7277 df-r 7360 |
This theorem is referenced by: ltresr2 7377 axrnegex 7414 |
Copyright terms: Public domain | W3C validator |