![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elreal2 | GIF version |
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) |
Ref | Expression |
---|---|
elreal2 | ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = ⟨(1st ‘𝐴), 0R⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 7823 | . . 3 ⊢ ℝ = (R × {0R}) | |
2 | 1 | eleq2i 2244 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
3 | xp1st 6168 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → (1st ‘𝐴) ∈ R) | |
4 | 1st2nd2 6178 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
5 | xp2nd 6169 | . . . . . . 7 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) ∈ {0R}) | |
6 | elsni 3612 | . . . . . . 7 ⊢ ((2nd ‘𝐴) ∈ {0R} → (2nd ‘𝐴) = 0R) | |
7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) = 0R) |
8 | 7 | opeq2d 3787 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨(1st ‘𝐴), 0R⟩) |
9 | 4, 8 | eqtrd 2210 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st ‘𝐴), 0R⟩) |
10 | 3, 9 | jca 306 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) → ((1st ‘𝐴) ∈ R ∧ 𝐴 = ⟨(1st ‘𝐴), 0R⟩)) |
11 | eleq1 2240 | . . . . 5 ⊢ (𝐴 = ⟨(1st ‘𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ ⟨(1st ‘𝐴), 0R⟩ ∈ (R × {0R}))) | |
12 | 0r 7751 | . . . . . . . 8 ⊢ 0R ∈ R | |
13 | 12 | elexi 2751 | . . . . . . 7 ⊢ 0R ∈ V |
14 | 13 | snid 3625 | . . . . . 6 ⊢ 0R ∈ {0R} |
15 | opelxp 4658 | . . . . . 6 ⊢ (⟨(1st ‘𝐴), 0R⟩ ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 0R ∈ {0R})) | |
16 | 14, 15 | mpbiran2 941 | . . . . 5 ⊢ (⟨(1st ‘𝐴), 0R⟩ ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R) |
17 | 11, 16 | bitrdi 196 | . . . 4 ⊢ (𝐴 = ⟨(1st ‘𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R)) |
18 | 17 | biimparc 299 | . . 3 ⊢ (((1st ‘𝐴) ∈ R ∧ 𝐴 = ⟨(1st ‘𝐴), 0R⟩) → 𝐴 ∈ (R × {0R})) |
19 | 10, 18 | impbii 126 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = ⟨(1st ‘𝐴), 0R⟩)) |
20 | 2, 19 | bitri 184 | 1 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = ⟨(1st ‘𝐴), 0R⟩)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {csn 3594 ⟨cop 3597 × cxp 4626 ‘cfv 5218 1st c1st 6141 2nd c2nd 6142 Rcnr 7298 0Rc0r 7299 ℝcr 7812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-inp 7467 df-i1p 7468 df-enr 7727 df-nr 7728 df-0r 7732 df-r 7823 |
This theorem is referenced by: ltresr2 7841 axrnegex 7880 axpre-suploclemres 7902 |
Copyright terms: Public domain | W3C validator |