Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvcnv1 GIF version

Theorem cocnvcnv1 5049
 Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv1 (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cocnvcnv1
StepHypRef Expression
1 cnvcnv2 4992 . . 3 𝐴 = (𝐴 ↾ V)
21coeq1i 4698 . 2 (𝐴𝐵) = ((𝐴 ↾ V) ∘ 𝐵)
3 ssv 3119 . . 3 ran 𝐵 ⊆ V
4 cores 5042 . . 3 (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴𝐵))
53, 4ax-mp 5 . 2 ((𝐴 ↾ V) ∘ 𝐵) = (𝐴𝐵)
62, 5eqtri 2160 1 (𝐴𝐵) = (𝐴𝐵)
 Colors of variables: wff set class Syntax hints:   = wceq 1331  Vcvv 2686   ⊆ wss 3071  ◡ccnv 4538  ran crn 4540   ↾ cres 4541   ∘ ccom 4543 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551 This theorem is referenced by:  cores2  5051  coires1  5056  cofunex2g  6010
 Copyright terms: Public domain W3C validator