![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cocnvcnv1 | GIF version |
Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cocnvcnv1 | ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv2 5120 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
2 | 1 | coeq1i 4822 | . 2 ⊢ (◡◡𝐴 ∘ 𝐵) = ((𝐴 ↾ V) ∘ 𝐵) |
3 | ssv 3202 | . . 3 ⊢ ran 𝐵 ⊆ V | |
4 | cores 5170 | . . 3 ⊢ (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵) |
6 | 2, 5 | eqtri 2214 | 1 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 Vcvv 2760 ⊆ wss 3154 ◡ccnv 4659 ran crn 4661 ↾ cres 4662 ∘ ccom 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 |
This theorem is referenced by: cores2 5179 coires1 5184 cofunex2g 6164 |
Copyright terms: Public domain | W3C validator |