| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cocnvcnv1 | GIF version | ||
| Description: A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) |
| Ref | Expression |
|---|---|
| cocnvcnv1 | ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv2 5137 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
| 2 | 1 | coeq1i 4838 | . 2 ⊢ (◡◡𝐴 ∘ 𝐵) = ((𝐴 ↾ V) ∘ 𝐵) |
| 3 | ssv 3215 | . . 3 ⊢ ran 𝐵 ⊆ V | |
| 4 | cores 5187 | . . 3 ⊢ (ran 𝐵 ⊆ V → ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝐴 ↾ V) ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| 6 | 2, 5 | eqtri 2226 | 1 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Vcvv 2772 ⊆ wss 3166 ◡ccnv 4675 ran crn 4677 ↾ cres 4678 ∘ ccom 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 |
| This theorem is referenced by: cores2 5196 coires1 5201 cofunex2g 6197 |
| Copyright terms: Public domain | W3C validator |