ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq2 GIF version

Theorem coeq2 4836
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
Assertion
Ref Expression
coeq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem coeq2
StepHypRef Expression
1 coss2 4834 . . 3 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
2 coss2 4834 . . 3 (𝐵𝐴 → (𝐶𝐵) ⊆ (𝐶𝐴))
31, 2anim12i 338 . 2 ((𝐴𝐵𝐵𝐴) → ((𝐶𝐴) ⊆ (𝐶𝐵) ∧ (𝐶𝐵) ⊆ (𝐶𝐴)))
4 eqss 3208 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3208 . 2 ((𝐶𝐴) = (𝐶𝐵) ↔ ((𝐶𝐴) ⊆ (𝐶𝐵) ∧ (𝐶𝐵) ⊆ (𝐶𝐴)))
63, 4, 53imtr4i 201 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wss 3166  ccom 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179  df-br 4045  df-opab 4106  df-co 4684
This theorem is referenced by:  coeq2i  4838  coeq2d  4840  coi2  5199  relcnvtr  5202  relcoi1  5214  f1eqcocnv  5860  ereq1  6627  seqf1oglem2  10665  seqf1og  10666  gsumwmhm  13330  upxp  14744  uptx  14746  txcn  14747
  Copyright terms: Public domain W3C validator