ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iplp GIF version

Definition df-iplp 7552
Description: Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example, 𝑟 ∈ (1st𝑥) implies 𝑟Q) and can be simplified as shown at genpdf 7592.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

Assertion
Ref Expression
df-iplp +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
Distinct variable group:   𝑥,𝑦,𝑞,𝑟,𝑠

Detailed syntax breakdown of Definition df-iplp
StepHypRef Expression
1 cpp 7377 . 2 class +P
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cnp 7375 . . 3 class P
5 vr . . . . . . . . . 10 setvar 𝑟
65cv 1363 . . . . . . . . 9 class 𝑟
72cv 1363 . . . . . . . . . 10 class 𝑥
8 c1st 6205 . . . . . . . . . 10 class 1st
97, 8cfv 5259 . . . . . . . . 9 class (1st𝑥)
106, 9wcel 2167 . . . . . . . 8 wff 𝑟 ∈ (1st𝑥)
11 vs . . . . . . . . . 10 setvar 𝑠
1211cv 1363 . . . . . . . . 9 class 𝑠
133cv 1363 . . . . . . . . . 10 class 𝑦
1413, 8cfv 5259 . . . . . . . . 9 class (1st𝑦)
1512, 14wcel 2167 . . . . . . . 8 wff 𝑠 ∈ (1st𝑦)
16 vq . . . . . . . . . 10 setvar 𝑞
1716cv 1363 . . . . . . . . 9 class 𝑞
18 cplq 7366 . . . . . . . . . 10 class +Q
196, 12, 18co 5925 . . . . . . . . 9 class (𝑟 +Q 𝑠)
2017, 19wceq 1364 . . . . . . . 8 wff 𝑞 = (𝑟 +Q 𝑠)
2110, 15, 20w3a 980 . . . . . . 7 wff (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
22 cnq 7364 . . . . . . 7 class Q
2321, 11, 22wrex 2476 . . . . . 6 wff 𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
2423, 5, 22wrex 2476 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
2524, 16, 22crab 2479 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}
26 c2nd 6206 . . . . . . . . . 10 class 2nd
277, 26cfv 5259 . . . . . . . . 9 class (2nd𝑥)
286, 27wcel 2167 . . . . . . . 8 wff 𝑟 ∈ (2nd𝑥)
2913, 26cfv 5259 . . . . . . . . 9 class (2nd𝑦)
3012, 29wcel 2167 . . . . . . . 8 wff 𝑠 ∈ (2nd𝑦)
3128, 30, 20w3a 980 . . . . . . 7 wff (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3231, 11, 22wrex 2476 . . . . . 6 wff 𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3332, 5, 22wrex 2476 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3433, 16, 22crab 2479 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}
3525, 34cop 3626 . . 3 class ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩
362, 3, 4, 4, 35cmpo 5927 . 2 class (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
371, 36wceq 1364 1 wff +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
Colors of variables: wff set class
This definition is referenced by:  addnqprl  7613  addnqpru  7614  addclpr  7621  plpvlu  7622  dmplp  7624  addnqprlemrl  7641  addnqprlemru  7642  addassprg  7663  distrlem1prl  7666  distrlem1pru  7667  distrlem4prl  7668  distrlem4pru  7669  distrlem5prl  7670  distrlem5pru  7671  ltaddpr  7681  ltexprlemfl  7693  ltexprlemrl  7694  ltexprlemfu  7695  ltexprlemru  7696  addcanprleml  7698  addcanprlemu  7699  cauappcvgprlemladdfu  7738  cauappcvgprlemladdfl  7739  caucvgprlemladdfu  7761
  Copyright terms: Public domain W3C validator