ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iplp GIF version

Definition df-iplp 7651
Description: Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example, 𝑟 ∈ (1st𝑥) implies 𝑟Q) and can be simplified as shown at genpdf 7691.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

Assertion
Ref Expression
df-iplp +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
Distinct variable group:   𝑥,𝑦,𝑞,𝑟,𝑠

Detailed syntax breakdown of Definition df-iplp
StepHypRef Expression
1 cpp 7476 . 2 class +P
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cnp 7474 . . 3 class P
5 vr . . . . . . . . . 10 setvar 𝑟
65cv 1394 . . . . . . . . 9 class 𝑟
72cv 1394 . . . . . . . . . 10 class 𝑥
8 c1st 6282 . . . . . . . . . 10 class 1st
97, 8cfv 5317 . . . . . . . . 9 class (1st𝑥)
106, 9wcel 2200 . . . . . . . 8 wff 𝑟 ∈ (1st𝑥)
11 vs . . . . . . . . . 10 setvar 𝑠
1211cv 1394 . . . . . . . . 9 class 𝑠
133cv 1394 . . . . . . . . . 10 class 𝑦
1413, 8cfv 5317 . . . . . . . . 9 class (1st𝑦)
1512, 14wcel 2200 . . . . . . . 8 wff 𝑠 ∈ (1st𝑦)
16 vq . . . . . . . . . 10 setvar 𝑞
1716cv 1394 . . . . . . . . 9 class 𝑞
18 cplq 7465 . . . . . . . . . 10 class +Q
196, 12, 18co 6000 . . . . . . . . 9 class (𝑟 +Q 𝑠)
2017, 19wceq 1395 . . . . . . . 8 wff 𝑞 = (𝑟 +Q 𝑠)
2110, 15, 20w3a 1002 . . . . . . 7 wff (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
22 cnq 7463 . . . . . . 7 class Q
2321, 11, 22wrex 2509 . . . . . 6 wff 𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
2423, 5, 22wrex 2509 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
2524, 16, 22crab 2512 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}
26 c2nd 6283 . . . . . . . . . 10 class 2nd
277, 26cfv 5317 . . . . . . . . 9 class (2nd𝑥)
286, 27wcel 2200 . . . . . . . 8 wff 𝑟 ∈ (2nd𝑥)
2913, 26cfv 5317 . . . . . . . . 9 class (2nd𝑦)
3012, 29wcel 2200 . . . . . . . 8 wff 𝑠 ∈ (2nd𝑦)
3128, 30, 20w3a 1002 . . . . . . 7 wff (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3231, 11, 22wrex 2509 . . . . . 6 wff 𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3332, 5, 22wrex 2509 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3433, 16, 22crab 2512 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}
3525, 34cop 3669 . . 3 class ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩
362, 3, 4, 4, 35cmpo 6002 . 2 class (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
371, 36wceq 1395 1 wff +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
Colors of variables: wff set class
This definition is referenced by:  addnqprl  7712  addnqpru  7713  addclpr  7720  plpvlu  7721  dmplp  7723  addnqprlemrl  7740  addnqprlemru  7741  addassprg  7762  distrlem1prl  7765  distrlem1pru  7766  distrlem4prl  7767  distrlem4pru  7768  distrlem5prl  7769  distrlem5pru  7770  ltaddpr  7780  ltexprlemfl  7792  ltexprlemrl  7793  ltexprlemfu  7794  ltexprlemru  7795  addcanprleml  7797  addcanprlemu  7798  cauappcvgprlemladdfu  7837  cauappcvgprlemladdfl  7838  caucvgprlemladdfu  7860
  Copyright terms: Public domain W3C validator