ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iplp GIF version

Definition df-iplp 7601
Description: Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example, 𝑟 ∈ (1st𝑥) implies 𝑟Q) and can be simplified as shown at genpdf 7641.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

Assertion
Ref Expression
df-iplp +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
Distinct variable group:   𝑥,𝑦,𝑞,𝑟,𝑠

Detailed syntax breakdown of Definition df-iplp
StepHypRef Expression
1 cpp 7426 . 2 class +P
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cnp 7424 . . 3 class P
5 vr . . . . . . . . . 10 setvar 𝑟
65cv 1372 . . . . . . . . 9 class 𝑟
72cv 1372 . . . . . . . . . 10 class 𝑥
8 c1st 6237 . . . . . . . . . 10 class 1st
97, 8cfv 5280 . . . . . . . . 9 class (1st𝑥)
106, 9wcel 2177 . . . . . . . 8 wff 𝑟 ∈ (1st𝑥)
11 vs . . . . . . . . . 10 setvar 𝑠
1211cv 1372 . . . . . . . . 9 class 𝑠
133cv 1372 . . . . . . . . . 10 class 𝑦
1413, 8cfv 5280 . . . . . . . . 9 class (1st𝑦)
1512, 14wcel 2177 . . . . . . . 8 wff 𝑠 ∈ (1st𝑦)
16 vq . . . . . . . . . 10 setvar 𝑞
1716cv 1372 . . . . . . . . 9 class 𝑞
18 cplq 7415 . . . . . . . . . 10 class +Q
196, 12, 18co 5957 . . . . . . . . 9 class (𝑟 +Q 𝑠)
2017, 19wceq 1373 . . . . . . . 8 wff 𝑞 = (𝑟 +Q 𝑠)
2110, 15, 20w3a 981 . . . . . . 7 wff (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
22 cnq 7413 . . . . . . 7 class Q
2321, 11, 22wrex 2486 . . . . . 6 wff 𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
2423, 5, 22wrex 2486 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
2524, 16, 22crab 2489 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}
26 c2nd 6238 . . . . . . . . . 10 class 2nd
277, 26cfv 5280 . . . . . . . . 9 class (2nd𝑥)
286, 27wcel 2177 . . . . . . . 8 wff 𝑟 ∈ (2nd𝑥)
2913, 26cfv 5280 . . . . . . . . 9 class (2nd𝑦)
3012, 29wcel 2177 . . . . . . . 8 wff 𝑠 ∈ (2nd𝑦)
3128, 30, 20w3a 981 . . . . . . 7 wff (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3231, 11, 22wrex 2486 . . . . . 6 wff 𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3332, 5, 22wrex 2486 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3433, 16, 22crab 2489 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}
3525, 34cop 3641 . . 3 class ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩
362, 3, 4, 4, 35cmpo 5959 . 2 class (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
371, 36wceq 1373 1 wff +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
Colors of variables: wff set class
This definition is referenced by:  addnqprl  7662  addnqpru  7663  addclpr  7670  plpvlu  7671  dmplp  7673  addnqprlemrl  7690  addnqprlemru  7691  addassprg  7712  distrlem1prl  7715  distrlem1pru  7716  distrlem4prl  7717  distrlem4pru  7718  distrlem5prl  7719  distrlem5pru  7720  ltaddpr  7730  ltexprlemfl  7742  ltexprlemrl  7743  ltexprlemfu  7744  ltexprlemru  7745  addcanprleml  7747  addcanprlemu  7748  cauappcvgprlemladdfu  7787  cauappcvgprlemladdfl  7788  caucvgprlemladdfu  7810
  Copyright terms: Public domain W3C validator