ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iplp GIF version

Definition df-iplp 7466
Description: Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example, 𝑟 ∈ (1st𝑥) implies 𝑟Q) and can be simplified as shown at genpdf 7506.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

Assertion
Ref Expression
df-iplp +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
Distinct variable group:   𝑥,𝑦,𝑞,𝑟,𝑠

Detailed syntax breakdown of Definition df-iplp
StepHypRef Expression
1 cpp 7291 . 2 class +P
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cnp 7289 . . 3 class P
5 vr . . . . . . . . . 10 setvar 𝑟
65cv 1352 . . . . . . . . 9 class 𝑟
72cv 1352 . . . . . . . . . 10 class 𝑥
8 c1st 6138 . . . . . . . . . 10 class 1st
97, 8cfv 5216 . . . . . . . . 9 class (1st𝑥)
106, 9wcel 2148 . . . . . . . 8 wff 𝑟 ∈ (1st𝑥)
11 vs . . . . . . . . . 10 setvar 𝑠
1211cv 1352 . . . . . . . . 9 class 𝑠
133cv 1352 . . . . . . . . . 10 class 𝑦
1413, 8cfv 5216 . . . . . . . . 9 class (1st𝑦)
1512, 14wcel 2148 . . . . . . . 8 wff 𝑠 ∈ (1st𝑦)
16 vq . . . . . . . . . 10 setvar 𝑞
1716cv 1352 . . . . . . . . 9 class 𝑞
18 cplq 7280 . . . . . . . . . 10 class +Q
196, 12, 18co 5874 . . . . . . . . 9 class (𝑟 +Q 𝑠)
2017, 19wceq 1353 . . . . . . . 8 wff 𝑞 = (𝑟 +Q 𝑠)
2110, 15, 20w3a 978 . . . . . . 7 wff (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
22 cnq 7278 . . . . . . 7 class Q
2321, 11, 22wrex 2456 . . . . . 6 wff 𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
2423, 5, 22wrex 2456 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
2524, 16, 22crab 2459 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}
26 c2nd 6139 . . . . . . . . . 10 class 2nd
277, 26cfv 5216 . . . . . . . . 9 class (2nd𝑥)
286, 27wcel 2148 . . . . . . . 8 wff 𝑟 ∈ (2nd𝑥)
2913, 26cfv 5216 . . . . . . . . 9 class (2nd𝑦)
3012, 29wcel 2148 . . . . . . . 8 wff 𝑠 ∈ (2nd𝑦)
3128, 30, 20w3a 978 . . . . . . 7 wff (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3231, 11, 22wrex 2456 . . . . . 6 wff 𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3332, 5, 22wrex 2456 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))
3433, 16, 22crab 2459 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}
3525, 34cop 3595 . . 3 class ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩
362, 3, 4, 4, 35cmpo 5876 . 2 class (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
371, 36wceq 1353 1 wff +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
Colors of variables: wff set class
This definition is referenced by:  addnqprl  7527  addnqpru  7528  addclpr  7535  plpvlu  7536  dmplp  7538  addnqprlemrl  7555  addnqprlemru  7556  addassprg  7577  distrlem1prl  7580  distrlem1pru  7581  distrlem4prl  7582  distrlem4pru  7583  distrlem5prl  7584  distrlem5pru  7585  ltaddpr  7595  ltexprlemfl  7607  ltexprlemrl  7608  ltexprlemfu  7609  ltexprlemru  7610  addcanprleml  7612  addcanprlemu  7613  cauappcvgprlemladdfu  7652  cauappcvgprlemladdfl  7653  caucvgprlemladdfu  7675
  Copyright terms: Public domain W3C validator