ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprlemru GIF version

Theorem mulnqprlemru 7494
Description: Lemma for mulnqpr 7497. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
mulnqprlemru ((𝐴Q𝐵Q) → (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑙,𝑢   𝐵,𝑙,𝑢

Proof of Theorem mulnqprlemru
Dummy variables 𝑓 𝑔 𝑟 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprlu 7467 . . . . . 6 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
2 nqprlu 7467 . . . . . 6 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
3 df-imp 7389 . . . . . . 7 ·P = (𝑥P, 𝑦P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑥) ∧ ∈ (1st𝑦) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑥) ∧ ∈ (2nd𝑦) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
4 mulclnq 7296 . . . . . . 7 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
53, 4genpelvu 7433 . . . . . 6 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ ∃𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 ·Q 𝑡)))
61, 2, 5syl2an 287 . . . . 5 ((𝐴Q𝐵Q) → (𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ ∃𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 ·Q 𝑡)))
76biimpa 294 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → ∃𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 ·Q 𝑡))
8 vex 2715 . . . . . . . . . . . . 13 𝑠 ∈ V
9 breq2 3969 . . . . . . . . . . . . 13 (𝑢 = 𝑠 → (𝐴 <Q 𝑢𝐴 <Q 𝑠))
10 ltnqex 7469 . . . . . . . . . . . . . 14 {𝑙𝑙 <Q 𝐴} ∈ V
11 gtnqex 7470 . . . . . . . . . . . . . 14 {𝑢𝐴 <Q 𝑢} ∈ V
1210, 11op2nd 6095 . . . . . . . . . . . . 13 (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑢𝐴 <Q 𝑢}
138, 9, 12elab2 2860 . . . . . . . . . . . 12 (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝐴 <Q 𝑠)
1413biimpi 119 . . . . . . . . . . 11 (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝐴 <Q 𝑠)
1514ad2antrl 482 . . . . . . . . . 10 ((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → 𝐴 <Q 𝑠)
1615adantr 274 . . . . . . . . 9 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 ·Q 𝑡)) → 𝐴 <Q 𝑠)
17 vex 2715 . . . . . . . . . . . . 13 𝑡 ∈ V
18 breq2 3969 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (𝐵 <Q 𝑢𝐵 <Q 𝑡))
19 ltnqex 7469 . . . . . . . . . . . . . 14 {𝑙𝑙 <Q 𝐵} ∈ V
20 gtnqex 7470 . . . . . . . . . . . . . 14 {𝑢𝐵 <Q 𝑢} ∈ V
2119, 20op2nd 6095 . . . . . . . . . . . . 13 (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) = {𝑢𝐵 <Q 𝑢}
2217, 18, 21elab2 2860 . . . . . . . . . . . 12 (𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ↔ 𝐵 <Q 𝑡)
2322biimpi 119 . . . . . . . . . . 11 (𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) → 𝐵 <Q 𝑡)
2423ad2antll 483 . . . . . . . . . 10 ((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → 𝐵 <Q 𝑡)
2524adantr 274 . . . . . . . . 9 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 ·Q 𝑡)) → 𝐵 <Q 𝑡)
26 ltrelnq 7285 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
2726brel 4638 . . . . . . . . . . 11 (𝐴 <Q 𝑠 → (𝐴Q𝑠Q))
2816, 27syl 14 . . . . . . . . . 10 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 ·Q 𝑡)) → (𝐴Q𝑠Q))
2926brel 4638 . . . . . . . . . . 11 (𝐵 <Q 𝑡 → (𝐵Q𝑡Q))
3025, 29syl 14 . . . . . . . . . 10 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 ·Q 𝑡)) → (𝐵Q𝑡Q))
31 lt2mulnq 7325 . . . . . . . . . 10 (((𝐴Q𝑠Q) ∧ (𝐵Q𝑡Q)) → ((𝐴 <Q 𝑠𝐵 <Q 𝑡) → (𝐴 ·Q 𝐵) <Q (𝑠 ·Q 𝑡)))
3228, 30, 31syl2anc 409 . . . . . . . . 9 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 ·Q 𝑡)) → ((𝐴 <Q 𝑠𝐵 <Q 𝑡) → (𝐴 ·Q 𝐵) <Q (𝑠 ·Q 𝑡)))
3316, 25, 32mp2and 430 . . . . . . . 8 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 ·Q 𝑡)) → (𝐴 ·Q 𝐵) <Q (𝑠 ·Q 𝑡))
34 breq2 3969 . . . . . . . . 9 (𝑟 = (𝑠 ·Q 𝑡) → ((𝐴 ·Q 𝐵) <Q 𝑟 ↔ (𝐴 ·Q 𝐵) <Q (𝑠 ·Q 𝑡)))
3534adantl 275 . . . . . . . 8 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 ·Q 𝑡)) → ((𝐴 ·Q 𝐵) <Q 𝑟 ↔ (𝐴 ·Q 𝐵) <Q (𝑠 ·Q 𝑡)))
3633, 35mpbird 166 . . . . . . 7 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 ·Q 𝑡)) → (𝐴 ·Q 𝐵) <Q 𝑟)
37 vex 2715 . . . . . . . 8 𝑟 ∈ V
38 breq2 3969 . . . . . . . 8 (𝑢 = 𝑟 → ((𝐴 ·Q 𝐵) <Q 𝑢 ↔ (𝐴 ·Q 𝐵) <Q 𝑟))
39 ltnqex 7469 . . . . . . . . 9 {𝑙𝑙 <Q (𝐴 ·Q 𝐵)} ∈ V
40 gtnqex 7470 . . . . . . . . 9 {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢} ∈ V
4139, 40op2nd 6095 . . . . . . . 8 (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) = {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}
4237, 38, 41elab2 2860 . . . . . . 7 (𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ↔ (𝐴 ·Q 𝐵) <Q 𝑟)
4336, 42sylibr 133 . . . . . 6 (((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ 𝑟 = (𝑠 ·Q 𝑡)) → 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
4443ex 114 . . . . 5 ((((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) ∧ (𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → (𝑟 = (𝑠 ·Q 𝑡) → 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)))
4544rexlimdvva 2582 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → (∃𝑠 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)∃𝑡 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)𝑟 = (𝑠 ·Q 𝑡) → 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)))
467, 45mpd 13 . . 3 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))) → 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
4746ex 114 . 2 ((𝐴Q𝐵Q) → (𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) → 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)))
4847ssrdv 3134 1 ((𝐴Q𝐵Q) → (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  {cab 2143  wrex 2436  wss 3102  cop 3563   class class class wbr 3965  cfv 5170  (class class class)co 5824  2nd c2nd 6087  Qcnq 7200   ·Q cmq 7203   <Q cltq 7205  Pcnp 7211   ·P cmp 7214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-1o 6363  df-oadd 6367  df-omul 6368  df-er 6480  df-ec 6482  df-qs 6486  df-ni 7224  df-pli 7225  df-mi 7226  df-lti 7227  df-plpq 7264  df-mpq 7265  df-enq 7267  df-nqqs 7268  df-plqqs 7269  df-mqqs 7270  df-1nqqs 7271  df-rq 7272  df-ltnqqs 7273  df-inp 7386  df-imp 7389
This theorem is referenced by:  mulnqprlemfl  7495  mulnqpr  7497
  Copyright terms: Public domain W3C validator