ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmp GIF version

Theorem dmmp 7079
Description: Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
dmmp dom ·P = (P × P)

Proof of Theorem dmmp
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-imp 7007 . 2 ·P = (𝑥P, 𝑦P ↦ ⟨{𝑣Q ∣ ∃𝑤Q𝑧Q (𝑤 ∈ (1st𝑥) ∧ 𝑧 ∈ (1st𝑦) ∧ 𝑣 = (𝑤 ·Q 𝑧))}, {𝑣Q ∣ ∃𝑤Q𝑧Q (𝑤 ∈ (2nd𝑥) ∧ 𝑧 ∈ (2nd𝑦) ∧ 𝑣 = (𝑤 ·Q 𝑧))}⟩)
2 mulclnq 6914 . 2 ((𝑤Q𝑧Q) → (𝑤 ·Q 𝑧) ∈ Q)
31, 2genipdm 7054 1 dom ·P = (P × P)
Colors of variables: wff set class
Syntax hints:   = wceq 1289   × cxp 4426  dom cdm 4428   ·Q cmq 6821  Pcnp 6829   ·P cmp 6832
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-oadd 6167  df-omul 6168  df-er 6272  df-ec 6274  df-qs 6278  df-ni 6842  df-mi 6844  df-mpq 6883  df-enq 6885  df-nqqs 6886  df-mqqs 6888  df-imp 7007
This theorem is referenced by:  mulassprg  7119
  Copyright terms: Public domain W3C validator