ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmp GIF version

Theorem dmmp 7554
Description: Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
dmmp dom ยทP = (P ร— P)

Proof of Theorem dmmp
Dummy variables ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ค ๐‘ฃ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-imp 7482 . 2 ยทP = (๐‘ฅ โˆˆ P, ๐‘ฆ โˆˆ P โ†ฆ โŸจ{๐‘ฃ โˆˆ Q โˆฃ โˆƒ๐‘ค โˆˆ Q โˆƒ๐‘ง โˆˆ Q (๐‘ค โˆˆ (1st โ€˜๐‘ฅ) โˆง ๐‘ง โˆˆ (1st โ€˜๐‘ฆ) โˆง ๐‘ฃ = (๐‘ค ยทQ ๐‘ง))}, {๐‘ฃ โˆˆ Q โˆฃ โˆƒ๐‘ค โˆˆ Q โˆƒ๐‘ง โˆˆ Q (๐‘ค โˆˆ (2nd โ€˜๐‘ฅ) โˆง ๐‘ง โˆˆ (2nd โ€˜๐‘ฆ) โˆง ๐‘ฃ = (๐‘ค ยทQ ๐‘ง))}โŸฉ)
2 mulclnq 7389 . 2 ((๐‘ค โˆˆ Q โˆง ๐‘ง โˆˆ Q) โ†’ (๐‘ค ยทQ ๐‘ง) โˆˆ Q)
31, 2genipdm 7529 1 dom ยทP = (P ร— P)
Colors of variables: wff set class
Syntax hints:   = wceq 1363   ร— cxp 4636  dom cdm 4638   ยทQ cmq 7296  Pcnp 7304   ยทP cmp 7307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-oadd 6435  df-omul 6436  df-er 6549  df-ec 6551  df-qs 6555  df-ni 7317  df-mi 7319  df-mpq 7358  df-enq 7360  df-nqqs 7361  df-mqqs 7363  df-imp 7482
This theorem is referenced by:  mulassprg  7594
  Copyright terms: Public domain W3C validator