ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-imp Unicode version

Definition df-imp 7612
Description: Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7611 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

Assertion
Ref Expression
df-imp  |-  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  .Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
Distinct variable group:    x, y, q, r, s

Detailed syntax breakdown of Definition df-imp
StepHypRef Expression
1 cmp 7437 . 2  class  .P.
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cnp 7434 . . 3  class  P.
5 vr . . . . . . . . . 10  setvar  r
65cv 1372 . . . . . . . . 9  class  r
72cv 1372 . . . . . . . . . 10  class  x
8 c1st 6242 . . . . . . . . . 10  class  1st
97, 8cfv 5285 . . . . . . . . 9  class  ( 1st `  x )
106, 9wcel 2177 . . . . . . . 8  wff  r  e.  ( 1st `  x
)
11 vs . . . . . . . . . 10  setvar  s
1211cv 1372 . . . . . . . . 9  class  s
133cv 1372 . . . . . . . . . 10  class  y
1413, 8cfv 5285 . . . . . . . . 9  class  ( 1st `  y )
1512, 14wcel 2177 . . . . . . . 8  wff  s  e.  ( 1st `  y
)
16 vq . . . . . . . . . 10  setvar  q
1716cv 1372 . . . . . . . . 9  class  q
18 cmq 7426 . . . . . . . . . 10  class  .Q
196, 12, 18co 5962 . . . . . . . . 9  class  ( r  .Q  s )
2017, 19wceq 1373 . . . . . . . 8  wff  q  =  ( r  .Q  s
)
2110, 15, 20w3a 981 . . . . . . 7  wff  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
22 cnq 7423 . . . . . . 7  class  Q.
2321, 11, 22wrex 2486 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
2423, 5, 22wrex 2486 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
2524, 16, 22crab 2489 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) }
26 c2nd 6243 . . . . . . . . . 10  class  2nd
277, 26cfv 5285 . . . . . . . . 9  class  ( 2nd `  x )
286, 27wcel 2177 . . . . . . . 8  wff  r  e.  ( 2nd `  x
)
2913, 26cfv 5285 . . . . . . . . 9  class  ( 2nd `  y )
3012, 29wcel 2177 . . . . . . . 8  wff  s  e.  ( 2nd `  y
)
3128, 30, 20w3a 981 . . . . . . 7  wff  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3231, 11, 22wrex 2486 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3332, 5, 22wrex 2486 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3433, 16, 22crab 2489 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) ) }
3525, 34cop 3641 . . 3  class  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >.
362, 3, 4, 4, 35cmpo 5964 . 2  class  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
371, 36wceq 1373 1  wff  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  .Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
Colors of variables: wff set class
This definition is referenced by:  mpvlu  7682  dmmp  7684  mulnqprl  7711  mulnqpru  7712  mulclpr  7715  mulnqprlemrl  7716  mulnqprlemru  7717  mulassprg  7724  distrlem1prl  7725  distrlem1pru  7726  distrlem4prl  7727  distrlem4pru  7728  distrlem5prl  7729  distrlem5pru  7730  1idprl  7733  1idpru  7734  recexprlem1ssl  7776  recexprlem1ssu  7777  recexprlemss1l  7778  recexprlemss1u  7779
  Copyright terms: Public domain W3C validator