ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-imp Unicode version

Definition df-imp 7459
Description: Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7458 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

Assertion
Ref Expression
df-imp  |-  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  .Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
Distinct variable group:    x, y, q, r, s

Detailed syntax breakdown of Definition df-imp
StepHypRef Expression
1 cmp 7284 . 2  class  .P.
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cnp 7281 . . 3  class  P.
5 vr . . . . . . . . . 10  setvar  r
65cv 1352 . . . . . . . . 9  class  r
72cv 1352 . . . . . . . . . 10  class  x
8 c1st 6133 . . . . . . . . . 10  class  1st
97, 8cfv 5212 . . . . . . . . 9  class  ( 1st `  x )
106, 9wcel 2148 . . . . . . . 8  wff  r  e.  ( 1st `  x
)
11 vs . . . . . . . . . 10  setvar  s
1211cv 1352 . . . . . . . . 9  class  s
133cv 1352 . . . . . . . . . 10  class  y
1413, 8cfv 5212 . . . . . . . . 9  class  ( 1st `  y )
1512, 14wcel 2148 . . . . . . . 8  wff  s  e.  ( 1st `  y
)
16 vq . . . . . . . . . 10  setvar  q
1716cv 1352 . . . . . . . . 9  class  q
18 cmq 7273 . . . . . . . . . 10  class  .Q
196, 12, 18co 5869 . . . . . . . . 9  class  ( r  .Q  s )
2017, 19wceq 1353 . . . . . . . 8  wff  q  =  ( r  .Q  s
)
2110, 15, 20w3a 978 . . . . . . 7  wff  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
22 cnq 7270 . . . . . . 7  class  Q.
2321, 11, 22wrex 2456 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
2423, 5, 22wrex 2456 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
2524, 16, 22crab 2459 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) }
26 c2nd 6134 . . . . . . . . . 10  class  2nd
277, 26cfv 5212 . . . . . . . . 9  class  ( 2nd `  x )
286, 27wcel 2148 . . . . . . . 8  wff  r  e.  ( 2nd `  x
)
2913, 26cfv 5212 . . . . . . . . 9  class  ( 2nd `  y )
3012, 29wcel 2148 . . . . . . . 8  wff  s  e.  ( 2nd `  y
)
3128, 30, 20w3a 978 . . . . . . 7  wff  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3231, 11, 22wrex 2456 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3332, 5, 22wrex 2456 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3433, 16, 22crab 2459 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) ) }
3525, 34cop 3594 . . 3  class  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >.
362, 3, 4, 4, 35cmpo 5871 . 2  class  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
371, 36wceq 1353 1  wff  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  .Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
Colors of variables: wff set class
This definition is referenced by:  mpvlu  7529  dmmp  7531  mulnqprl  7558  mulnqpru  7559  mulclpr  7562  mulnqprlemrl  7563  mulnqprlemru  7564  mulassprg  7571  distrlem1prl  7572  distrlem1pru  7573  distrlem4prl  7574  distrlem4pru  7575  distrlem5prl  7576  distrlem5pru  7577  1idprl  7580  1idpru  7581  recexprlem1ssl  7623  recexprlem1ssu  7624  recexprlemss1l  7625  recexprlemss1u  7626
  Copyright terms: Public domain W3C validator