![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-imp | Unicode version |
Description: Define multiplication on
positive reals. Here we use a simple
definition which is similar to df-iplp 7458 or the definition of
multiplication on positive reals in Metamath Proof Explorer. This is as
opposed to the more complicated definition of multiplication given in
Section 11.2.1 of [HoTT], p. (varies),
which appears to be motivated by
handling negative numbers or handling modified Dedekind cuts in which
locatedness is omitted.
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.) |
Ref | Expression |
---|---|
df-imp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmp 7284 |
. 2
![]() ![]() | |
2 | vx |
. . 3
![]() ![]() | |
3 | vy |
. . 3
![]() ![]() | |
4 | cnp 7281 |
. . 3
![]() ![]() | |
5 | vr |
. . . . . . . . . 10
![]() ![]() | |
6 | 5 | cv 1352 |
. . . . . . . . 9
![]() ![]() |
7 | 2 | cv 1352 |
. . . . . . . . . 10
![]() ![]() |
8 | c1st 6133 |
. . . . . . . . . 10
![]() ![]() | |
9 | 7, 8 | cfv 5212 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
10 | 6, 9 | wcel 2148 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | vs |
. . . . . . . . . 10
![]() ![]() | |
12 | 11 | cv 1352 |
. . . . . . . . 9
![]() ![]() |
13 | 3 | cv 1352 |
. . . . . . . . . 10
![]() ![]() |
14 | 13, 8 | cfv 5212 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
15 | 12, 14 | wcel 2148 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | vq |
. . . . . . . . . 10
![]() ![]() | |
17 | 16 | cv 1352 |
. . . . . . . . 9
![]() ![]() |
18 | cmq 7273 |
. . . . . . . . . 10
![]() ![]() | |
19 | 6, 12, 18 | co 5869 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
20 | 17, 19 | wceq 1353 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 10, 15, 20 | w3a 978 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | cnq 7270 |
. . . . . . 7
![]() ![]() | |
23 | 21, 11, 22 | wrex 2456 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 23, 5, 22 | wrex 2456 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 24, 16, 22 | crab 2459 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | c2nd 6134 |
. . . . . . . . . 10
![]() ![]() | |
27 | 7, 26 | cfv 5212 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
28 | 6, 27 | wcel 2148 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 13, 26 | cfv 5212 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
30 | 12, 29 | wcel 2148 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 28, 30, 20 | w3a 978 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 31, 11, 22 | wrex 2456 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 32, 5, 22 | wrex 2456 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 33, 16, 22 | crab 2459 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 25, 34 | cop 3594 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 2, 3, 4, 4, 35 | cmpo 5871 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 1, 36 | wceq 1353 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: mpvlu 7529 dmmp 7531 mulnqprl 7558 mulnqpru 7559 mulclpr 7562 mulnqprlemrl 7563 mulnqprlemru 7564 mulassprg 7571 distrlem1prl 7572 distrlem1pru 7573 distrlem4prl 7574 distrlem4pru 7575 distrlem5prl 7576 distrlem5pru 7577 1idprl 7580 1idpru 7581 recexprlem1ssl 7623 recexprlem1ssu 7624 recexprlemss1l 7625 recexprlemss1u 7626 |
Copyright terms: Public domain | W3C validator |