ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-imp Unicode version

Definition df-imp 7468
Description: Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7467 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

Assertion
Ref Expression
df-imp  |-  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  .Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
Distinct variable group:    x, y, q, r, s

Detailed syntax breakdown of Definition df-imp
StepHypRef Expression
1 cmp 7293 . 2  class  .P.
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cnp 7290 . . 3  class  P.
5 vr . . . . . . . . . 10  setvar  r
65cv 1352 . . . . . . . . 9  class  r
72cv 1352 . . . . . . . . . 10  class  x
8 c1st 6139 . . . . . . . . . 10  class  1st
97, 8cfv 5217 . . . . . . . . 9  class  ( 1st `  x )
106, 9wcel 2148 . . . . . . . 8  wff  r  e.  ( 1st `  x
)
11 vs . . . . . . . . . 10  setvar  s
1211cv 1352 . . . . . . . . 9  class  s
133cv 1352 . . . . . . . . . 10  class  y
1413, 8cfv 5217 . . . . . . . . 9  class  ( 1st `  y )
1512, 14wcel 2148 . . . . . . . 8  wff  s  e.  ( 1st `  y
)
16 vq . . . . . . . . . 10  setvar  q
1716cv 1352 . . . . . . . . 9  class  q
18 cmq 7282 . . . . . . . . . 10  class  .Q
196, 12, 18co 5875 . . . . . . . . 9  class  ( r  .Q  s )
2017, 19wceq 1353 . . . . . . . 8  wff  q  =  ( r  .Q  s
)
2110, 15, 20w3a 978 . . . . . . 7  wff  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
22 cnq 7279 . . . . . . 7  class  Q.
2321, 11, 22wrex 2456 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
2423, 5, 22wrex 2456 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
2524, 16, 22crab 2459 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) }
26 c2nd 6140 . . . . . . . . . 10  class  2nd
277, 26cfv 5217 . . . . . . . . 9  class  ( 2nd `  x )
286, 27wcel 2148 . . . . . . . 8  wff  r  e.  ( 2nd `  x
)
2913, 26cfv 5217 . . . . . . . . 9  class  ( 2nd `  y )
3012, 29wcel 2148 . . . . . . . 8  wff  s  e.  ( 2nd `  y
)
3128, 30, 20w3a 978 . . . . . . 7  wff  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3231, 11, 22wrex 2456 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3332, 5, 22wrex 2456 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3433, 16, 22crab 2459 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) ) }
3525, 34cop 3596 . . 3  class  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >.
362, 3, 4, 4, 35cmpo 5877 . 2  class  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
371, 36wceq 1353 1  wff  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  .Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
Colors of variables: wff set class
This definition is referenced by:  mpvlu  7538  dmmp  7540  mulnqprl  7567  mulnqpru  7568  mulclpr  7571  mulnqprlemrl  7572  mulnqprlemru  7573  mulassprg  7580  distrlem1prl  7581  distrlem1pru  7582  distrlem4prl  7583  distrlem4pru  7584  distrlem5prl  7585  distrlem5pru  7586  1idprl  7589  1idpru  7590  recexprlem1ssl  7632  recexprlem1ssu  7633  recexprlemss1l  7634  recexprlemss1u  7635
  Copyright terms: Public domain W3C validator