ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-imp Unicode version

Definition df-imp 7652
Description: Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7651 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

Assertion
Ref Expression
df-imp  |-  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  .Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
Distinct variable group:    x, y, q, r, s

Detailed syntax breakdown of Definition df-imp
StepHypRef Expression
1 cmp 7477 . 2  class  .P.
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cnp 7474 . . 3  class  P.
5 vr . . . . . . . . . 10  setvar  r
65cv 1394 . . . . . . . . 9  class  r
72cv 1394 . . . . . . . . . 10  class  x
8 c1st 6282 . . . . . . . . . 10  class  1st
97, 8cfv 5317 . . . . . . . . 9  class  ( 1st `  x )
106, 9wcel 2200 . . . . . . . 8  wff  r  e.  ( 1st `  x
)
11 vs . . . . . . . . . 10  setvar  s
1211cv 1394 . . . . . . . . 9  class  s
133cv 1394 . . . . . . . . . 10  class  y
1413, 8cfv 5317 . . . . . . . . 9  class  ( 1st `  y )
1512, 14wcel 2200 . . . . . . . 8  wff  s  e.  ( 1st `  y
)
16 vq . . . . . . . . . 10  setvar  q
1716cv 1394 . . . . . . . . 9  class  q
18 cmq 7466 . . . . . . . . . 10  class  .Q
196, 12, 18co 6000 . . . . . . . . 9  class  ( r  .Q  s )
2017, 19wceq 1395 . . . . . . . 8  wff  q  =  ( r  .Q  s
)
2110, 15, 20w3a 1002 . . . . . . 7  wff  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
22 cnq 7463 . . . . . . 7  class  Q.
2321, 11, 22wrex 2509 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
2423, 5, 22wrex 2509 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
2524, 16, 22crab 2512 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) }
26 c2nd 6283 . . . . . . . . . 10  class  2nd
277, 26cfv 5317 . . . . . . . . 9  class  ( 2nd `  x )
286, 27wcel 2200 . . . . . . . 8  wff  r  e.  ( 2nd `  x
)
2913, 26cfv 5317 . . . . . . . . 9  class  ( 2nd `  y )
3012, 29wcel 2200 . . . . . . . 8  wff  s  e.  ( 2nd `  y
)
3128, 30, 20w3a 1002 . . . . . . 7  wff  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3231, 11, 22wrex 2509 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3332, 5, 22wrex 2509 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3433, 16, 22crab 2512 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) ) }
3525, 34cop 3669 . . 3  class  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >.
362, 3, 4, 4, 35cmpo 6002 . 2  class  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
371, 36wceq 1395 1  wff  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  .Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
Colors of variables: wff set class
This definition is referenced by:  mpvlu  7722  dmmp  7724  mulnqprl  7751  mulnqpru  7752  mulclpr  7755  mulnqprlemrl  7756  mulnqprlemru  7757  mulassprg  7764  distrlem1prl  7765  distrlem1pru  7766  distrlem4prl  7767  distrlem4pru  7768  distrlem5prl  7769  distrlem5pru  7770  1idprl  7773  1idpru  7774  recexprlem1ssl  7816  recexprlem1ssu  7817  recexprlemss1l  7818  recexprlemss1u  7819
  Copyright terms: Public domain W3C validator