| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclpr | GIF version | ||
| Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| mulclpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-imp 7652 | . . . 4 ⊢ ·P = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}〉) | |
| 2 | 1 | genpelxp 7694 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ (𝒫 Q × 𝒫 Q)) |
| 3 | mulclnq 7559 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 ·Q 𝑧) ∈ Q) | |
| 4 | 1, 3 | genpml 7700 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 ·P 𝐵))) |
| 5 | 1, 3 | genpmu 7701 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))) |
| 6 | 2, 4, 5 | jca32 310 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 ·P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))) |
| 7 | ltmnqg 7584 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦))) | |
| 8 | mulcomnqg 7566 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥)) | |
| 9 | mulnqprl 7751 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑢 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝑡 ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑢 ·Q 𝑡) → 𝑥 ∈ (1st ‘(𝐴 ·P 𝐵)))) | |
| 10 | 1, 3, 7, 8, 9 | genprndl 7704 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 ·P 𝐵))))) |
| 11 | mulnqpru 7752 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑢 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝑡 ∈ (2nd ‘𝐵))) ∧ 𝑥 ∈ Q) → ((𝑢 ·Q 𝑡) <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴 ·P 𝐵)))) | |
| 12 | 1, 3, 7, 8, 11 | genprndu 7705 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))))) |
| 13 | 10, 12 | jca 306 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 ·P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵)))))) |
| 14 | 1, 3, 7, 8 | genpdisj 7706 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵)))) |
| 15 | mullocpr 7754 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))) | |
| 16 | 13, 14, 15 | 3jca 1201 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 ·P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))) |
| 17 | elnp1st2nd 7659 | . 2 ⊢ ((𝐴 ·P 𝐵) ∈ P ↔ (((𝐴 ·P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 ·P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))))) | |
| 18 | 6, 16, 17 | sylanbrc 417 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ P) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∧ w3a 1002 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 𝒫 cpw 3649 class class class wbr 4082 × cxp 4716 ‘cfv 5317 (class class class)co 6000 1st c1st 6282 2nd c2nd 6283 Qcnq 7463 ·Q cmq 7466 <Q cltq 7468 Pcnp 7474 ·P cmp 7477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-imp 7652 |
| This theorem is referenced by: mulnqprlemfl 7758 mulnqprlemfu 7759 mulnqpr 7760 mulassprg 7764 distrlem1prl 7765 distrlem1pru 7766 distrlem4prl 7767 distrlem4pru 7768 distrlem5prl 7769 distrlem5pru 7770 distrprg 7771 1idpr 7775 recexprlemex 7820 ltmprr 7825 mulcmpblnrlemg 7923 mulcmpblnr 7924 mulclsr 7937 mulcomsrg 7940 mulasssrg 7941 distrsrg 7942 m1m1sr 7944 1idsr 7951 00sr 7952 recexgt0sr 7956 mulgt0sr 7961 mulextsr1lem 7963 mulextsr1 7964 recidpirq 8041 |
| Copyright terms: Public domain | W3C validator |