| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclpr | GIF version | ||
| Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| mulclpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-imp 7555 | . . . 4 ⊢ ·P = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}〉) | |
| 2 | 1 | genpelxp 7597 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ (𝒫 Q × 𝒫 Q)) |
| 3 | mulclnq 7462 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 ·Q 𝑧) ∈ Q) | |
| 4 | 1, 3 | genpml 7603 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 ·P 𝐵))) |
| 5 | 1, 3 | genpmu 7604 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))) |
| 6 | 2, 4, 5 | jca32 310 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐴 ·P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))) |
| 7 | ltmnqg 7487 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦))) | |
| 8 | mulcomnqg 7469 | . . . . 5 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥)) | |
| 9 | mulnqprl 7654 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑢 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝑡 ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑢 ·Q 𝑡) → 𝑥 ∈ (1st ‘(𝐴 ·P 𝐵)))) | |
| 10 | 1, 3, 7, 8, 9 | genprndl 7607 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 ·P 𝐵))))) |
| 11 | mulnqpru 7655 | . . . . 5 ⊢ ((((𝐴 ∈ P ∧ 𝑢 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝑡 ∈ (2nd ‘𝐵))) ∧ 𝑥 ∈ Q) → ((𝑢 ·Q 𝑡) <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴 ·P 𝐵)))) | |
| 12 | 1, 3, 7, 8, 11 | genprndu 7608 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))))) |
| 13 | 10, 12 | jca 306 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 ·P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵)))))) |
| 14 | 1, 3, 7, 8 | genpdisj 7609 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵)))) |
| 15 | mullocpr 7657 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))) | |
| 16 | 13, 14, 15 | 3jca 1179 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 ·P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))) |
| 17 | elnp1st2nd 7562 | . 2 ⊢ ((𝐴 ·P 𝐵) ∈ P ↔ (((𝐴 ·P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴 ·P 𝐵)))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))))) | |
| 18 | 6, 16, 17 | sylanbrc 417 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ P) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 𝒫 cpw 3606 class class class wbr 4034 × cxp 4662 ‘cfv 5259 (class class class)co 5925 1st c1st 6205 2nd c2nd 6206 Qcnq 7366 ·Q cmq 7369 <Q cltq 7371 Pcnp 7377 ·P cmp 7380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7390 df-pli 7391 df-mi 7392 df-lti 7393 df-plpq 7430 df-mpq 7431 df-enq 7433 df-nqqs 7434 df-plqqs 7435 df-mqqs 7436 df-1nqqs 7437 df-rq 7438 df-ltnqqs 7439 df-enq0 7510 df-nq0 7511 df-0nq0 7512 df-plq0 7513 df-mq0 7514 df-inp 7552 df-imp 7555 |
| This theorem is referenced by: mulnqprlemfl 7661 mulnqprlemfu 7662 mulnqpr 7663 mulassprg 7667 distrlem1prl 7668 distrlem1pru 7669 distrlem4prl 7670 distrlem4pru 7671 distrlem5prl 7672 distrlem5pru 7673 distrprg 7674 1idpr 7678 recexprlemex 7723 ltmprr 7728 mulcmpblnrlemg 7826 mulcmpblnr 7827 mulclsr 7840 mulcomsrg 7843 mulasssrg 7844 distrsrg 7845 m1m1sr 7847 1idsr 7854 00sr 7855 recexgt0sr 7859 mulgt0sr 7864 mulextsr1lem 7866 mulextsr1 7867 recidpirq 7944 |
| Copyright terms: Public domain | W3C validator |