ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclpr GIF version

Theorem mulclpr 7504
Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
mulclpr ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)

Proof of Theorem mulclpr
Dummy variables 𝑞 𝑟 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-imp 7401 . . . 4 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}⟩)
21genpelxp 7443 . . 3 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ (𝒫 Q × 𝒫 Q))
3 mulclnq 7308 . . . 4 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
41, 3genpml 7449 . . 3 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)))
51, 3genpmu 7450 . . 3 ((𝐴P𝐵P) → ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))
62, 4, 5jca32 308 . 2 ((𝐴P𝐵P) → ((𝐴 ·P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
7 ltmnqg 7333 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧 ·Q 𝑥) <Q (𝑧 ·Q 𝑦)))
8 mulcomnqg 7315 . . . . 5 ((𝑥Q𝑦Q) → (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥))
9 mulnqprl 7500 . . . . 5 ((((𝐴P𝑢 ∈ (1st𝐴)) ∧ (𝐵P𝑡 ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑢 ·Q 𝑡) → 𝑥 ∈ (1st ‘(𝐴 ·P 𝐵))))
101, 3, 7, 8, 9genprndl 7453 . . . 4 ((𝐴P𝐵P) → ∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 ·P 𝐵)))))
11 mulnqpru 7501 . . . . 5 ((((𝐴P𝑢 ∈ (2nd𝐴)) ∧ (𝐵P𝑡 ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑢 ·Q 𝑡) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴 ·P 𝐵))))
121, 3, 7, 8, 11genprndu 7454 . . . 4 ((𝐴P𝐵P) → ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
1310, 12jca 304 . . 3 ((𝐴P𝐵P) → (∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 ·P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))))))
141, 3, 7, 8genpdisj 7455 . . 3 ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))))
15 mullocpr 7503 . . 3 ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
1613, 14, 153jca 1166 . 2 ((𝐴P𝐵P) → ((∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 ·P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵))))))
17 elnp1st2nd 7408 . 2 ((𝐴 ·P 𝐵) ∈ P ↔ (((𝐴 ·P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))) ∧ ((∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 ·P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 ·P 𝐵))) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))))
186, 16, 17sylanbrc 414 1 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 967  wcel 2135  wral 2442  wrex 2443  𝒫 cpw 3553   class class class wbr 3976   × cxp 4596  cfv 5182  (class class class)co 5836  1st c1st 6098  2nd c2nd 6099  Qcnq 7212   ·Q cmq 7215   <Q cltq 7217  Pcnp 7223   ·P cmp 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-2o 6376  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-enq0 7356  df-nq0 7357  df-0nq0 7358  df-plq0 7359  df-mq0 7360  df-inp 7398  df-imp 7401
This theorem is referenced by:  mulnqprlemfl  7507  mulnqprlemfu  7508  mulnqpr  7509  mulassprg  7513  distrlem1prl  7514  distrlem1pru  7515  distrlem4prl  7516  distrlem4pru  7517  distrlem5prl  7518  distrlem5pru  7519  distrprg  7520  1idpr  7524  recexprlemex  7569  ltmprr  7574  mulcmpblnrlemg  7672  mulcmpblnr  7673  mulclsr  7686  mulcomsrg  7689  mulasssrg  7690  distrsrg  7691  m1m1sr  7693  1idsr  7700  00sr  7701  recexgt0sr  7705  mulgt0sr  7710  mulextsr1lem  7712  mulextsr1  7713  recidpirq  7790
  Copyright terms: Public domain W3C validator