| Step | Hyp | Ref
 | Expression | 
| 1 |   | ltmnqg 7468 | 
. . . . . . 7
⊢ ((𝑤 ∈ Q ∧
𝑣 ∈ Q
∧ 𝑢 ∈
Q) → (𝑤
<Q 𝑣 ↔ (𝑢 ·Q 𝑤) <Q
(𝑢
·Q 𝑣))) | 
| 2 | 1 | adantl 277 | 
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) ∧ (𝑤 ∈ Q ∧ 𝑣 ∈ Q ∧
𝑢 ∈ Q))
→ (𝑤
<Q 𝑣 ↔ (𝑢 ·Q 𝑤) <Q
(𝑢
·Q 𝑣))) | 
| 3 |   | simp1 999 | 
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → 𝐴
∈ P) | 
| 4 |   | simpll 527 | 
. . . . . . 7
⊢ (((𝑥 ∈ (1st
‘𝐴) ∧ 𝑦 ∈ (1st
‘𝐵)) ∧ (𝑓 ∈ (1st
‘𝐴) ∧ 𝑧 ∈ (1st
‘𝐶))) → 𝑥 ∈ (1st
‘𝐴)) | 
| 5 |   | prop 7542 | 
. . . . . . . 8
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 6 |   | elprnql 7548 | 
. . . . . . . 8
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑥 ∈ (1st
‘𝐴)) → 𝑥 ∈
Q) | 
| 7 | 5, 6 | sylan 283 | 
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑥 ∈ (1st
‘𝐴)) → 𝑥 ∈
Q) | 
| 8 | 3, 4, 7 | syl2an 289 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝑥 ∈ Q) | 
| 9 |   | simprl 529 | 
. . . . . . 7
⊢ (((𝑥 ∈ (1st
‘𝐴) ∧ 𝑦 ∈ (1st
‘𝐵)) ∧ (𝑓 ∈ (1st
‘𝐴) ∧ 𝑧 ∈ (1st
‘𝐶))) → 𝑓 ∈ (1st
‘𝐴)) | 
| 10 |   | elprnql 7548 | 
. . . . . . . 8
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑓 ∈ (1st
‘𝐴)) → 𝑓 ∈
Q) | 
| 11 | 5, 10 | sylan 283 | 
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑓 ∈ (1st
‘𝐴)) → 𝑓 ∈
Q) | 
| 12 | 3, 9, 11 | syl2an 289 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝑓 ∈ Q) | 
| 13 |   | simpl2 1003 | 
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝐵 ∈ P) | 
| 14 |   | simprlr 538 | 
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝑦 ∈ (1st ‘𝐵)) | 
| 15 |   | prop 7542 | 
. . . . . . . 8
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) | 
| 16 |   | elprnql 7548 | 
. . . . . . . 8
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑦 ∈ (1st
‘𝐵)) → 𝑦 ∈
Q) | 
| 17 | 15, 16 | sylan 283 | 
. . . . . . 7
⊢ ((𝐵 ∈ P ∧
𝑦 ∈ (1st
‘𝐵)) → 𝑦 ∈
Q) | 
| 18 | 13, 14, 17 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝑦 ∈ Q) | 
| 19 |   | mulcomnqg 7450 | 
. . . . . . 7
⊢ ((𝑤 ∈ Q ∧
𝑣 ∈ Q)
→ (𝑤
·Q 𝑣) = (𝑣 ·Q 𝑤)) | 
| 20 | 19 | adantl 277 | 
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) ∧ (𝑤 ∈ Q ∧ 𝑣 ∈ Q)) →
(𝑤
·Q 𝑣) = (𝑣 ·Q 𝑤)) | 
| 21 | 2, 8, 12, 18, 20 | caovord2d 6093 | 
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q 𝑦) <Q
(𝑓
·Q 𝑦))) | 
| 22 |   | ltanqg 7467 | 
. . . . . . 7
⊢ ((𝑤 ∈ Q ∧
𝑣 ∈ Q
∧ 𝑢 ∈
Q) → (𝑤
<Q 𝑣 ↔ (𝑢 +Q 𝑤) <Q
(𝑢
+Q 𝑣))) | 
| 23 | 22 | adantl 277 | 
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) ∧ (𝑤 ∈ Q ∧ 𝑣 ∈ Q ∧
𝑢 ∈ Q))
→ (𝑤
<Q 𝑣 ↔ (𝑢 +Q 𝑤) <Q
(𝑢
+Q 𝑣))) | 
| 24 |   | mulclnq 7443 | 
. . . . . . 7
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑥
·Q 𝑦) ∈ Q) | 
| 25 | 8, 18, 24 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑥 ·Q 𝑦) ∈
Q) | 
| 26 |   | mulclnq 7443 | 
. . . . . . 7
⊢ ((𝑓 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑓
·Q 𝑦) ∈ Q) | 
| 27 | 12, 18, 26 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑓 ·Q 𝑦) ∈
Q) | 
| 28 |   | simpl3 1004 | 
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝐶 ∈ P) | 
| 29 |   | simprrr 540 | 
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝑧 ∈ (1st ‘𝐶)) | 
| 30 |   | prop 7542 | 
. . . . . . . . 9
⊢ (𝐶 ∈ P →
〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈
P) | 
| 31 |   | elprnql 7548 | 
. . . . . . . . 9
⊢
((〈(1st ‘𝐶), (2nd ‘𝐶)〉 ∈ P ∧ 𝑧 ∈ (1st
‘𝐶)) → 𝑧 ∈
Q) | 
| 32 | 30, 31 | sylan 283 | 
. . . . . . . 8
⊢ ((𝐶 ∈ P ∧
𝑧 ∈ (1st
‘𝐶)) → 𝑧 ∈
Q) | 
| 33 | 28, 29, 32 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝑧 ∈ Q) | 
| 34 |   | mulclnq 7443 | 
. . . . . . 7
⊢ ((𝑓 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑓
·Q 𝑧) ∈ Q) | 
| 35 | 12, 33, 34 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑓 ·Q 𝑧) ∈
Q) | 
| 36 |   | addcomnqg 7448 | 
. . . . . . 7
⊢ ((𝑤 ∈ Q ∧
𝑣 ∈ Q)
→ (𝑤
+Q 𝑣) = (𝑣 +Q 𝑤)) | 
| 37 | 36 | adantl 277 | 
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) ∧ (𝑤 ∈ Q ∧ 𝑣 ∈ Q)) →
(𝑤
+Q 𝑣) = (𝑣 +Q 𝑤)) | 
| 38 | 23, 25, 27, 35, 37 | caovord2d 6093 | 
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → ((𝑥 ·Q 𝑦) <Q
(𝑓
·Q 𝑦) ↔ ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) <Q ((𝑓
·Q 𝑦) +Q (𝑓
·Q 𝑧)))) | 
| 39 | 21, 38 | bitrd 188 | 
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) <Q ((𝑓
·Q 𝑦) +Q (𝑓
·Q 𝑧)))) | 
| 40 |   | simpl1 1002 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝐴 ∈ P) | 
| 41 |   | addclpr 7604 | 
. . . . . . . 8
⊢ ((𝐵 ∈ P ∧
𝐶 ∈ P)
→ (𝐵
+P 𝐶) ∈ P) | 
| 42 | 41 | 3adant1 1017 | 
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → (𝐵
+P 𝐶) ∈ P) | 
| 43 | 42 | adantr 276 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝐵 +P 𝐶) ∈
P) | 
| 44 |   | mulclpr 7639 | 
. . . . . 6
⊢ ((𝐴 ∈ P ∧
(𝐵
+P 𝐶) ∈ P) → (𝐴
·P (𝐵 +P 𝐶)) ∈
P) | 
| 45 | 40, 43, 44 | syl2anc 411 | 
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝐴 ·P (𝐵 +P
𝐶)) ∈
P) | 
| 46 |   | distrnqg 7454 | 
. . . . . . 7
⊢ ((𝑓 ∈ Q ∧
𝑦 ∈ Q
∧ 𝑧 ∈
Q) → (𝑓
·Q (𝑦 +Q 𝑧)) = ((𝑓 ·Q 𝑦) +Q
(𝑓
·Q 𝑧))) | 
| 47 | 12, 18, 33, 46 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑓 ·Q (𝑦 +Q
𝑧)) = ((𝑓 ·Q 𝑦) +Q
(𝑓
·Q 𝑧))) | 
| 48 |   | simprrl 539 | 
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝑓 ∈ (1st ‘𝐴)) | 
| 49 |   | df-iplp 7535 | 
. . . . . . . . . 10
⊢ 
+P = (𝑢 ∈ P, 𝑣 ∈ P ↦ 〈{𝑤 ∈ Q ∣
∃𝑔 ∈
Q ∃ℎ
∈ Q (𝑔
∈ (1st ‘𝑢) ∧ ℎ ∈ (1st ‘𝑣) ∧ 𝑤 = (𝑔 +Q ℎ))}, {𝑤 ∈ Q ∣ ∃𝑔 ∈ Q
∃ℎ ∈
Q (𝑔 ∈
(2nd ‘𝑢)
∧ ℎ ∈
(2nd ‘𝑣)
∧ 𝑤 = (𝑔 +Q
ℎ))}〉) | 
| 50 |   | addclnq 7442 | 
. . . . . . . . . 10
⊢ ((𝑔 ∈ Q ∧
ℎ ∈ Q)
→ (𝑔
+Q ℎ) ∈ Q) | 
| 51 | 49, 50 | genpprecll 7581 | 
. . . . . . . . 9
⊢ ((𝐵 ∈ P ∧
𝐶 ∈ P)
→ ((𝑦 ∈
(1st ‘𝐵)
∧ 𝑧 ∈
(1st ‘𝐶))
→ (𝑦
+Q 𝑧) ∈ (1st ‘(𝐵 +P
𝐶)))) | 
| 52 | 51 | imp 124 | 
. . . . . . . 8
⊢ (((𝐵 ∈ P ∧
𝐶 ∈ P)
∧ (𝑦 ∈
(1st ‘𝐵)
∧ 𝑧 ∈
(1st ‘𝐶)))
→ (𝑦
+Q 𝑧) ∈ (1st ‘(𝐵 +P
𝐶))) | 
| 53 | 13, 28, 14, 29, 52 | syl22anc 1250 | 
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑦 +Q 𝑧) ∈ (1st
‘(𝐵
+P 𝐶))) | 
| 54 |   | df-imp 7536 | 
. . . . . . . . 9
⊢ 
·P = (𝑢 ∈ P, 𝑣 ∈ P ↦ 〈{𝑤 ∈ Q ∣
∃𝑔 ∈
Q ∃ℎ
∈ Q (𝑔
∈ (1st ‘𝑢) ∧ ℎ ∈ (1st ‘𝑣) ∧ 𝑤 = (𝑔 ·Q ℎ))}, {𝑤 ∈ Q ∣ ∃𝑔 ∈ Q
∃ℎ ∈
Q (𝑔 ∈
(2nd ‘𝑢)
∧ ℎ ∈
(2nd ‘𝑣)
∧ 𝑤 = (𝑔
·Q ℎ))}〉) | 
| 55 |   | mulclnq 7443 | 
. . . . . . . . 9
⊢ ((𝑔 ∈ Q ∧
ℎ ∈ Q)
→ (𝑔
·Q ℎ) ∈ Q) | 
| 56 | 54, 55 | genpprecll 7581 | 
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
(𝐵
+P 𝐶) ∈ P) → ((𝑓 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑧) ∈ (1st
‘(𝐵
+P 𝐶))) → (𝑓 ·Q (𝑦 +Q
𝑧)) ∈ (1st
‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 57 | 56 | imp 124 | 
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
(𝐵
+P 𝐶) ∈ P) ∧ (𝑓 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑧) ∈ (1st
‘(𝐵
+P 𝐶)))) → (𝑓 ·Q (𝑦 +Q
𝑧)) ∈ (1st
‘(𝐴
·P (𝐵 +P 𝐶)))) | 
| 58 | 40, 43, 48, 53, 57 | syl22anc 1250 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑓 ·Q (𝑦 +Q
𝑧)) ∈ (1st
‘(𝐴
·P (𝐵 +P 𝐶)))) | 
| 59 | 47, 58 | eqeltrrd 2274 | 
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → ((𝑓 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶)))) | 
| 60 |   | prop 7542 | 
. . . . . 6
⊢ ((𝐴
·P (𝐵 +P 𝐶)) ∈ P →
〈(1st ‘(𝐴 ·P (𝐵 +P
𝐶))), (2nd
‘(𝐴
·P (𝐵 +P 𝐶)))〉 ∈
P) | 
| 61 |   | prcdnql 7551 | 
. . . . . 6
⊢
((〈(1st ‘(𝐴 ·P (𝐵 +P
𝐶))), (2nd
‘(𝐴
·P (𝐵 +P 𝐶)))〉 ∈ P
∧ ((𝑓
·Q 𝑦) +Q (𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶)))) → (((𝑥
·Q 𝑦) +Q (𝑓
·Q 𝑧)) <Q ((𝑓
·Q 𝑦) +Q (𝑓
·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 62 | 60, 61 | sylan 283 | 
. . . . 5
⊢ (((𝐴
·P (𝐵 +P 𝐶)) ∈ P ∧
((𝑓
·Q 𝑦) +Q (𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶)))) → (((𝑥
·Q 𝑦) +Q (𝑓
·Q 𝑧)) <Q ((𝑓
·Q 𝑦) +Q (𝑓
·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 63 | 45, 59, 62 | syl2anc 411 | 
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (((𝑥
·Q 𝑦) +Q (𝑓
·Q 𝑧)) <Q ((𝑓
·Q 𝑦) +Q (𝑓
·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 64 | 39, 63 | sylbid 150 | 
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑥 <Q 𝑓 → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 65 | 2, 12, 8, 33, 20 | caovord2d 6093 | 
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑓 <Q 𝑥 ↔ (𝑓 ·Q 𝑧) <Q
(𝑥
·Q 𝑧))) | 
| 66 |   | mulclnq 7443 | 
. . . . . . 7
⊢ ((𝑥 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑥
·Q 𝑧) ∈ Q) | 
| 67 | 8, 33, 66 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑥 ·Q 𝑧) ∈
Q) | 
| 68 |   | ltanqg 7467 | 
. . . . . 6
⊢ (((𝑓
·Q 𝑧) ∈ Q ∧ (𝑥
·Q 𝑧) ∈ Q ∧ (𝑥
·Q 𝑦) ∈ Q) → ((𝑓
·Q 𝑧) <Q (𝑥
·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) <Q ((𝑥
·Q 𝑦) +Q (𝑥
·Q 𝑧)))) | 
| 69 | 35, 67, 25, 68 | syl3anc 1249 | 
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → ((𝑓 ·Q 𝑧) <Q
(𝑥
·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) <Q ((𝑥
·Q 𝑦) +Q (𝑥
·Q 𝑧)))) | 
| 70 | 65, 69 | bitrd 188 | 
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑓 <Q 𝑥 ↔ ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) <Q ((𝑥
·Q 𝑦) +Q (𝑥
·Q 𝑧)))) | 
| 71 |   | distrnqg 7454 | 
. . . . . . 7
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q
∧ 𝑧 ∈
Q) → (𝑥
·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧))) | 
| 72 | 8, 18, 33, 71 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑥 ·Q (𝑦 +Q
𝑧)) = ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧))) | 
| 73 |   | simprll 537 | 
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → 𝑥 ∈ (1st ‘𝐴)) | 
| 74 | 54, 55 | genpprecll 7581 | 
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
(𝐵
+P 𝐶) ∈ P) → ((𝑥 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑧) ∈ (1st
‘(𝐵
+P 𝐶))) → (𝑥 ·Q (𝑦 +Q
𝑧)) ∈ (1st
‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 75 | 74 | imp 124 | 
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
(𝐵
+P 𝐶) ∈ P) ∧ (𝑥 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑧) ∈ (1st
‘(𝐵
+P 𝐶)))) → (𝑥 ·Q (𝑦 +Q
𝑧)) ∈ (1st
‘(𝐴
·P (𝐵 +P 𝐶)))) | 
| 76 | 40, 43, 73, 53, 75 | syl22anc 1250 | 
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑥 ·Q (𝑦 +Q
𝑧)) ∈ (1st
‘(𝐴
·P (𝐵 +P 𝐶)))) | 
| 77 | 72, 76 | eqeltrrd 2274 | 
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶)))) | 
| 78 |   | prcdnql 7551 | 
. . . . . 6
⊢
((〈(1st ‘(𝐴 ·P (𝐵 +P
𝐶))), (2nd
‘(𝐴
·P (𝐵 +P 𝐶)))〉 ∈ P
∧ ((𝑥
·Q 𝑦) +Q (𝑥
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶)))) → (((𝑥
·Q 𝑦) +Q (𝑓
·Q 𝑧)) <Q ((𝑥
·Q 𝑦) +Q (𝑥
·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 79 | 60, 78 | sylan 283 | 
. . . . 5
⊢ (((𝐴
·P (𝐵 +P 𝐶)) ∈ P ∧
((𝑥
·Q 𝑦) +Q (𝑥
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶)))) → (((𝑥
·Q 𝑦) +Q (𝑓
·Q 𝑧)) <Q ((𝑥
·Q 𝑦) +Q (𝑥
·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 80 | 45, 77, 79 | syl2anc 411 | 
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (((𝑥
·Q 𝑦) +Q (𝑓
·Q 𝑧)) <Q ((𝑥
·Q 𝑦) +Q (𝑥
·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 81 | 70, 80 | sylbid 150 | 
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑓 <Q 𝑥 → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 82 | 64, 81 | jaod 718 | 
. 2
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → ((𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 83 |   | ltsonq 7465 | 
. . . . 5
⊢ 
<Q Or Q | 
| 84 |   | nqtri3or 7463 | 
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑓 ∈ Q)
→ (𝑥
<Q 𝑓 ∨ 𝑥 = 𝑓 ∨ 𝑓 <Q 𝑥)) | 
| 85 | 83, 84 | sotritrieq 4360 | 
. . . 4
⊢ ((𝑥 ∈ Q ∧
𝑓 ∈ Q)
→ (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q
𝑓 ∨ 𝑓 <Q 𝑥))) | 
| 86 | 8, 12, 85 | syl2anc 411 | 
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥))) | 
| 87 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑥 = 𝑓 → (𝑥 ·Q 𝑧) = (𝑓 ·Q 𝑧)) | 
| 88 | 87 | oveq2d 5938 | 
. . . . . 6
⊢ (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q
(𝑥
·Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧))) | 
| 89 | 72, 88 | sylan9eq 2249 | 
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) ∧ 𝑥 = 𝑓) → (𝑥 ·Q (𝑦 +Q
𝑧)) = ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧))) | 
| 90 | 76 | adantr 276 | 
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) ∧ 𝑥 = 𝑓) → (𝑥 ·Q (𝑦 +Q
𝑧)) ∈ (1st
‘(𝐴
·P (𝐵 +P 𝐶)))) | 
| 91 | 89, 90 | eqeltrrd 2274 | 
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) ∧ 𝑥 = 𝑓) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶)))) | 
| 92 | 91 | ex 115 | 
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 93 | 86, 92 | sylbird 170 | 
. 2
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → (¬ (𝑥 <Q
𝑓 ∨ 𝑓 <Q 𝑥) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶))))) | 
| 94 |   | ltdcnq 7464 | 
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑓 ∈ Q)
→ DECID 𝑥 <Q 𝑓) | 
| 95 |   | ltdcnq 7464 | 
. . . . . 6
⊢ ((𝑓 ∈ Q ∧
𝑥 ∈ Q)
→ DECID 𝑓 <Q 𝑥) | 
| 96 | 95 | ancoms 268 | 
. . . . 5
⊢ ((𝑥 ∈ Q ∧
𝑓 ∈ Q)
→ DECID 𝑓 <Q 𝑥) | 
| 97 |   | dcor 937 | 
. . . . 5
⊢
(DECID 𝑥 <Q 𝑓 → (DECID
𝑓
<Q 𝑥 → DECID (𝑥 <Q
𝑓 ∨ 𝑓 <Q 𝑥))) | 
| 98 | 94, 96, 97 | sylc 62 | 
. . . 4
⊢ ((𝑥 ∈ Q ∧
𝑓 ∈ Q)
→ DECID (𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥)) | 
| 99 | 8, 12, 98 | syl2anc 411 | 
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → DECID
(𝑥
<Q 𝑓 ∨ 𝑓 <Q 𝑥)) | 
| 100 |   | df-dc 836 | 
. . 3
⊢
(DECID (𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥) ↔ ((𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥) ∨ ¬ (𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥))) | 
| 101 | 99, 100 | sylib 122 | 
. 2
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → ((𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥) ∨ ¬ (𝑥 <Q 𝑓 ∨ 𝑓 <Q 𝑥))) | 
| 102 | 82, 93, 101 | mpjaod 719 | 
1
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) ∧ ((𝑥
∈ (1st ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵)) ∧ (𝑓 ∈ (1st ‘𝐴) ∧ 𝑧 ∈ (1st ‘𝐶)))) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶)))) |