ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem4prl GIF version

Theorem distrlem4prl 7767
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem4prl (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓   𝑥,𝐶,𝑦,𝑧,𝑓

Proof of Theorem distrlem4prl
Dummy variables 𝑤 𝑣 𝑢 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 7584 . . . . . . 7 ((𝑤Q𝑣Q𝑢Q) → (𝑤 <Q 𝑣 ↔ (𝑢 ·Q 𝑤) <Q (𝑢 ·Q 𝑣)))
21adantl 277 . . . . . 6 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) ∧ (𝑤Q𝑣Q𝑢Q)) → (𝑤 <Q 𝑣 ↔ (𝑢 ·Q 𝑤) <Q (𝑢 ·Q 𝑣)))
3 simp1 1021 . . . . . . 7 ((𝐴P𝐵P𝐶P) → 𝐴P)
4 simpll 527 . . . . . . 7 (((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶))) → 𝑥 ∈ (1st𝐴))
5 prop 7658 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
6 elprnql 7664 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → 𝑥Q)
75, 6sylan 283 . . . . . . 7 ((𝐴P𝑥 ∈ (1st𝐴)) → 𝑥Q)
83, 4, 7syl2an 289 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝑥Q)
9 simprl 529 . . . . . . 7 (((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶))) → 𝑓 ∈ (1st𝐴))
10 elprnql 7664 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (1st𝐴)) → 𝑓Q)
115, 10sylan 283 . . . . . . 7 ((𝐴P𝑓 ∈ (1st𝐴)) → 𝑓Q)
123, 9, 11syl2an 289 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝑓Q)
13 simpl2 1025 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝐵P)
14 simprlr 538 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝑦 ∈ (1st𝐵))
15 prop 7658 . . . . . . . 8 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
16 elprnql 7664 . . . . . . . 8 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → 𝑦Q)
1715, 16sylan 283 . . . . . . 7 ((𝐵P𝑦 ∈ (1st𝐵)) → 𝑦Q)
1813, 14, 17syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝑦Q)
19 mulcomnqg 7566 . . . . . . 7 ((𝑤Q𝑣Q) → (𝑤 ·Q 𝑣) = (𝑣 ·Q 𝑤))
2019adantl 277 . . . . . 6 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) ∧ (𝑤Q𝑣Q)) → (𝑤 ·Q 𝑣) = (𝑣 ·Q 𝑤))
212, 8, 12, 18, 20caovord2d 6174 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦)))
22 ltanqg 7583 . . . . . . 7 ((𝑤Q𝑣Q𝑢Q) → (𝑤 <Q 𝑣 ↔ (𝑢 +Q 𝑤) <Q (𝑢 +Q 𝑣)))
2322adantl 277 . . . . . 6 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) ∧ (𝑤Q𝑣Q𝑢Q)) → (𝑤 <Q 𝑣 ↔ (𝑢 +Q 𝑤) <Q (𝑢 +Q 𝑣)))
24 mulclnq 7559 . . . . . . 7 ((𝑥Q𝑦Q) → (𝑥 ·Q 𝑦) ∈ Q)
258, 18, 24syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑥 ·Q 𝑦) ∈ Q)
26 mulclnq 7559 . . . . . . 7 ((𝑓Q𝑦Q) → (𝑓 ·Q 𝑦) ∈ Q)
2712, 18, 26syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑓 ·Q 𝑦) ∈ Q)
28 simpl3 1026 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝐶P)
29 simprrr 540 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝑧 ∈ (1st𝐶))
30 prop 7658 . . . . . . . . 9 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
31 elprnql 7664 . . . . . . . . 9 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑧 ∈ (1st𝐶)) → 𝑧Q)
3230, 31sylan 283 . . . . . . . 8 ((𝐶P𝑧 ∈ (1st𝐶)) → 𝑧Q)
3328, 29, 32syl2anc 411 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝑧Q)
34 mulclnq 7559 . . . . . . 7 ((𝑓Q𝑧Q) → (𝑓 ·Q 𝑧) ∈ Q)
3512, 33, 34syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑓 ·Q 𝑧) ∈ Q)
36 addcomnqg 7564 . . . . . . 7 ((𝑤Q𝑣Q) → (𝑤 +Q 𝑣) = (𝑣 +Q 𝑤))
3736adantl 277 . . . . . 6 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) ∧ (𝑤Q𝑣Q)) → (𝑤 +Q 𝑣) = (𝑣 +Q 𝑤))
3823, 25, 27, 35, 37caovord2d 6174 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
3921, 38bitrd 188 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
40 simpl1 1024 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝐴P)
41 addclpr 7720 . . . . . . . 8 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
42413adant1 1039 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
4342adantr 276 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝐵 +P 𝐶) ∈ P)
44 mulclpr 7755 . . . . . 6 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
4540, 43, 44syl2anc 411 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
46 distrnqg 7570 . . . . . . 7 ((𝑓Q𝑦Q𝑧Q) → (𝑓 ·Q (𝑦 +Q 𝑧)) = ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
4712, 18, 33, 46syl3anc 1271 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑓 ·Q (𝑦 +Q 𝑧)) = ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
48 simprrl 539 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝑓 ∈ (1st𝐴))
49 df-iplp 7651 . . . . . . . . . 10 +P = (𝑢P, 𝑣P ↦ ⟨{𝑤Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑢) ∧ ∈ (1st𝑣) ∧ 𝑤 = (𝑔 +Q ))}, {𝑤Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑢) ∧ ∈ (2nd𝑣) ∧ 𝑤 = (𝑔 +Q ))}⟩)
50 addclnq 7558 . . . . . . . . . 10 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
5149, 50genpprecll 7697 . . . . . . . . 9 ((𝐵P𝐶P) → ((𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶)) → (𝑦 +Q 𝑧) ∈ (1st ‘(𝐵 +P 𝐶))))
5251imp 124 . . . . . . . 8 (((𝐵P𝐶P) ∧ (𝑦 ∈ (1st𝐵) ∧ 𝑧 ∈ (1st𝐶))) → (𝑦 +Q 𝑧) ∈ (1st ‘(𝐵 +P 𝐶)))
5313, 28, 14, 29, 52syl22anc 1272 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑦 +Q 𝑧) ∈ (1st ‘(𝐵 +P 𝐶)))
54 df-imp 7652 . . . . . . . . 9 ·P = (𝑢P, 𝑣P ↦ ⟨{𝑤Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑢) ∧ ∈ (1st𝑣) ∧ 𝑤 = (𝑔 ·Q ))}, {𝑤Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑢) ∧ ∈ (2nd𝑣) ∧ 𝑤 = (𝑔 ·Q ))}⟩)
55 mulclnq 7559 . . . . . . . . 9 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
5654, 55genpprecll 7697 . . . . . . . 8 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑓 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑧) ∈ (1st ‘(𝐵 +P 𝐶))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
5756imp 124 . . . . . . 7 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑓 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑧) ∈ (1st ‘(𝐵 +P 𝐶)))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
5840, 43, 48, 53, 57syl22anc 1272 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
5947, 58eqeltrrd 2307 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
60 prop 7658 . . . . . 6 ((𝐴 ·P (𝐵 +P 𝐶)) ∈ P → ⟨(1st ‘(𝐴 ·P (𝐵 +P 𝐶))), (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))⟩ ∈ P)
61 prcdnql 7667 . . . . . 6 ((⟨(1st ‘(𝐴 ·P (𝐵 +P 𝐶))), (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))⟩ ∈ P ∧ ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
6260, 61sylan 283 . . . . 5 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
6345, 59, 62syl2anc 411 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
6439, 63sylbid 150 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑥 <Q 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
652, 12, 8, 33, 20caovord2d 6174 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑓 <Q 𝑥 ↔ (𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧)))
66 mulclnq 7559 . . . . . . 7 ((𝑥Q𝑧Q) → (𝑥 ·Q 𝑧) ∈ Q)
678, 33, 66syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑥 ·Q 𝑧) ∈ Q)
68 ltanqg 7583 . . . . . 6 (((𝑓 ·Q 𝑧) ∈ Q ∧ (𝑥 ·Q 𝑧) ∈ Q ∧ (𝑥 ·Q 𝑦) ∈ Q) → ((𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
6935, 67, 25, 68syl3anc 1271 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
7065, 69bitrd 188 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑓 <Q 𝑥 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
71 distrnqg 7570 . . . . . . 7 ((𝑥Q𝑦Q𝑧Q) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
728, 18, 33, 71syl3anc 1271 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
73 simprll 537 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → 𝑥 ∈ (1st𝐴))
7454, 55genpprecll 7697 . . . . . . . 8 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑥 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑧) ∈ (1st ‘(𝐵 +P 𝐶))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
7574imp 124 . . . . . . 7 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑥 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑧) ∈ (1st ‘(𝐵 +P 𝐶)))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
7640, 43, 73, 53, 75syl22anc 1272 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
7772, 76eqeltrrd 2307 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
78 prcdnql 7667 . . . . . 6 ((⟨(1st ‘(𝐴 ·P (𝐵 +P 𝐶))), (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))⟩ ∈ P ∧ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
7960, 78sylan 283 . . . . 5 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
8045, 77, 79syl2anc 411 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
8170, 80sylbid 150 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑓 <Q 𝑥 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
8264, 81jaod 722 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 <Q 𝑓𝑓 <Q 𝑥) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
83 ltsonq 7581 . . . . 5 <Q Or Q
84 nqtri3or 7579 . . . . 5 ((𝑥Q𝑓Q) → (𝑥 <Q 𝑓𝑥 = 𝑓𝑓 <Q 𝑥))
8583, 84sotritrieq 4415 . . . 4 ((𝑥Q𝑓Q) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
868, 12, 85syl2anc 411 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
87 oveq1 6007 . . . . . . 7 (𝑥 = 𝑓 → (𝑥 ·Q 𝑧) = (𝑓 ·Q 𝑧))
8887oveq2d 6016 . . . . . 6 (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
8972, 88sylan9eq 2282 . . . . 5 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) ∧ 𝑥 = 𝑓) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
9076adantr 276 . . . . 5 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) ∧ 𝑥 = 𝑓) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
9189, 90eqeltrrd 2307 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) ∧ 𝑥 = 𝑓) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
9291ex 115 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
9386, 92sylbird 170 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → (¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶)))))
94 ltdcnq 7580 . . . . 5 ((𝑥Q𝑓Q) → DECID 𝑥 <Q 𝑓)
95 ltdcnq 7580 . . . . . 6 ((𝑓Q𝑥Q) → DECID 𝑓 <Q 𝑥)
9695ancoms 268 . . . . 5 ((𝑥Q𝑓Q) → DECID 𝑓 <Q 𝑥)
97 dcor 941 . . . . 5 (DECID 𝑥 <Q 𝑓 → (DECID 𝑓 <Q 𝑥DECID (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
9894, 96, 97sylc 62 . . . 4 ((𝑥Q𝑓Q) → DECID (𝑥 <Q 𝑓𝑓 <Q 𝑥))
998, 12, 98syl2anc 411 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → DECID (𝑥 <Q 𝑓𝑓 <Q 𝑥))
100 df-dc 840 . . 3 (DECID (𝑥 <Q 𝑓𝑓 <Q 𝑥) ↔ ((𝑥 <Q 𝑓𝑓 <Q 𝑥) ∨ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
10199, 100sylib 122 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 <Q 𝑓𝑓 <Q 𝑥) ∨ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
10282, 93, 101mpjaod 723 1 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  cop 3669   class class class wbr 4082  cfv 5317  (class class class)co 6000  1st c1st 6282  2nd c2nd 6283  Qcnq 7463   +Q cplq 7465   ·Q cmq 7466   <Q cltq 7468  Pcnp 7474   +P cpp 7476   ·P cmp 7477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-iplp 7651  df-imp 7652
This theorem is referenced by:  distrlem5prl  7769
  Copyright terms: Public domain W3C validator