Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulassprg | GIF version |
Description: Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.) |
Ref | Expression |
---|---|
mulassprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵 ·P 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-imp 7406 | . 2 ⊢ ·P = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}〉) | |
2 | mulclnq 7313 | . 2 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 ·Q 𝑧) ∈ Q) | |
3 | dmmp 7478 | . 2 ⊢ dom ·P = (P × P) | |
4 | mulclpr 7509 | . 2 ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓 ·P 𝑔) ∈ P) | |
5 | mulassnqg 7321 | . 2 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓 ·Q 𝑔) ·Q ℎ) = (𝑓 ·Q (𝑔 ·Q ℎ))) | |
6 | 1, 2, 3, 4, 5 | genpassg 7463 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 ·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵 ·P 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 (class class class)co 5841 ·Q cmq 7220 Pcnp 7228 ·P cmp 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-eprel 4266 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-irdg 6334 df-1o 6380 df-2o 6381 df-oadd 6384 df-omul 6385 df-er 6497 df-ec 6499 df-qs 6503 df-ni 7241 df-pli 7242 df-mi 7243 df-lti 7244 df-plpq 7281 df-mpq 7282 df-enq 7284 df-nqqs 7285 df-plqqs 7286 df-mqqs 7287 df-1nqqs 7288 df-rq 7289 df-ltnqqs 7290 df-enq0 7361 df-nq0 7362 df-0nq0 7363 df-plq0 7364 df-mq0 7365 df-inp 7403 df-imp 7406 |
This theorem is referenced by: ltmprr 7579 mulasssrg 7695 |
Copyright terms: Public domain | W3C validator |