ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem4pru GIF version

Theorem distrlem4pru 7698
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem4pru (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓   𝑥,𝐶,𝑦,𝑧,𝑓

Proof of Theorem distrlem4pru
Dummy variables 𝑤 𝑣 𝑢 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 7514 . . . . . . 7 ((𝑤Q𝑣Q𝑢Q) → (𝑤 <Q 𝑣 ↔ (𝑢 ·Q 𝑤) <Q (𝑢 ·Q 𝑣)))
21adantl 277 . . . . . 6 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) ∧ (𝑤Q𝑣Q𝑢Q)) → (𝑤 <Q 𝑣 ↔ (𝑢 ·Q 𝑤) <Q (𝑢 ·Q 𝑣)))
3 simp1 1000 . . . . . . 7 ((𝐴P𝐵P𝐶P) → 𝐴P)
4 simpll 527 . . . . . . 7 (((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶))) → 𝑥 ∈ (2nd𝐴))
5 prop 7588 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
6 elprnqu 7595 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (2nd𝐴)) → 𝑥Q)
75, 6sylan 283 . . . . . . 7 ((𝐴P𝑥 ∈ (2nd𝐴)) → 𝑥Q)
83, 4, 7syl2an 289 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝑥Q)
9 simprl 529 . . . . . . 7 (((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶))) → 𝑓 ∈ (2nd𝐴))
10 elprnqu 7595 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
115, 10sylan 283 . . . . . . 7 ((𝐴P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
123, 9, 11syl2an 289 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝑓Q)
13 simpl3 1005 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝐶P)
14 simprrr 540 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝑧 ∈ (2nd𝐶))
15 prop 7588 . . . . . . . 8 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
16 elprnqu 7595 . . . . . . . 8 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P𝑧 ∈ (2nd𝐶)) → 𝑧Q)
1715, 16sylan 283 . . . . . . 7 ((𝐶P𝑧 ∈ (2nd𝐶)) → 𝑧Q)
1813, 14, 17syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝑧Q)
19 mulcomnqg 7496 . . . . . . 7 ((𝑤Q𝑣Q) → (𝑤 ·Q 𝑣) = (𝑣 ·Q 𝑤))
2019adantl 277 . . . . . 6 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) ∧ (𝑤Q𝑣Q)) → (𝑤 ·Q 𝑣) = (𝑣 ·Q 𝑤))
212, 8, 12, 18, 20caovord2d 6116 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q 𝑧) <Q (𝑓 ·Q 𝑧)))
22 mulclnq 7489 . . . . . . 7 ((𝑥Q𝑧Q) → (𝑥 ·Q 𝑧) ∈ Q)
238, 18, 22syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑥 ·Q 𝑧) ∈ Q)
24 mulclnq 7489 . . . . . . 7 ((𝑓Q𝑧Q) → (𝑓 ·Q 𝑧) ∈ Q)
2512, 18, 24syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑓 ·Q 𝑧) ∈ Q)
26 simpl2 1004 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝐵P)
27 simprlr 538 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝑦 ∈ (2nd𝐵))
28 prop 7588 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
29 elprnqu 7595 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (2nd𝐵)) → 𝑦Q)
3028, 29sylan 283 . . . . . . . 8 ((𝐵P𝑦 ∈ (2nd𝐵)) → 𝑦Q)
3126, 27, 30syl2anc 411 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝑦Q)
32 mulclnq 7489 . . . . . . 7 ((𝑥Q𝑦Q) → (𝑥 ·Q 𝑦) ∈ Q)
338, 31, 32syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑥 ·Q 𝑦) ∈ Q)
34 ltanqg 7513 . . . . . 6 (((𝑥 ·Q 𝑧) ∈ Q ∧ (𝑓 ·Q 𝑧) ∈ Q ∧ (𝑥 ·Q 𝑦) ∈ Q) → ((𝑥 ·Q 𝑧) <Q (𝑓 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
3523, 25, 33, 34syl3anc 1250 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 ·Q 𝑧) <Q (𝑓 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
3621, 35bitrd 188 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
37 simpl1 1003 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝐴P)
38 addclpr 7650 . . . . . . . 8 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
39383adant1 1018 . . . . . . 7 ((𝐴P𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
4039adantr 276 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝐵 +P 𝐶) ∈ P)
41 mulclpr 7685 . . . . . 6 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
4237, 40, 41syl2anc 411 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
43 distrnqg 7500 . . . . . . 7 ((𝑥Q𝑦Q𝑧Q) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
448, 31, 18, 43syl3anc 1250 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
45 simprll 537 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝑥 ∈ (2nd𝐴))
46 df-iplp 7581 . . . . . . . . . 10 +P = (𝑢P, 𝑣P ↦ ⟨{𝑤Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑢) ∧ ∈ (1st𝑣) ∧ 𝑤 = (𝑔 +Q ))}, {𝑤Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑢) ∧ ∈ (2nd𝑣) ∧ 𝑤 = (𝑔 +Q ))}⟩)
47 addclnq 7488 . . . . . . . . . 10 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
4846, 47genppreclu 7628 . . . . . . . . 9 ((𝐵P𝐶P) → ((𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶)) → (𝑦 +Q 𝑧) ∈ (2nd ‘(𝐵 +P 𝐶))))
4948imp 124 . . . . . . . 8 (((𝐵P𝐶P) ∧ (𝑦 ∈ (2nd𝐵) ∧ 𝑧 ∈ (2nd𝐶))) → (𝑦 +Q 𝑧) ∈ (2nd ‘(𝐵 +P 𝐶)))
5026, 13, 27, 14, 49syl22anc 1251 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑦 +Q 𝑧) ∈ (2nd ‘(𝐵 +P 𝐶)))
51 df-imp 7582 . . . . . . . . 9 ·P = (𝑢P, 𝑣P ↦ ⟨{𝑤Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑢) ∧ ∈ (1st𝑣) ∧ 𝑤 = (𝑔 ·Q ))}, {𝑤Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑢) ∧ ∈ (2nd𝑣) ∧ 𝑤 = (𝑔 ·Q ))}⟩)
52 mulclnq 7489 . . . . . . . . 9 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
5351, 52genppreclu 7628 . . . . . . . 8 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑥 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑧) ∈ (2nd ‘(𝐵 +P 𝐶))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
5453imp 124 . . . . . . 7 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑥 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑧) ∈ (2nd ‘(𝐵 +P 𝐶)))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
5537, 40, 45, 50, 54syl22anc 1251 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
5644, 55eqeltrrd 2283 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
57 prop 7588 . . . . . 6 ((𝐴 ·P (𝐵 +P 𝐶)) ∈ P → ⟨(1st ‘(𝐴 ·P (𝐵 +P 𝐶))), (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))⟩ ∈ P)
58 prcunqu 7598 . . . . . 6 ((⟨(1st ‘(𝐴 ·P (𝐵 +P 𝐶))), (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))⟩ ∈ P ∧ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))) → (((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
5957, 58sylan 283 . . . . 5 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))) → (((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
6042, 56, 59syl2anc 411 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
6136, 60sylbid 150 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑥 <Q 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
622, 12, 8, 31, 20caovord2d 6116 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑓 <Q 𝑥 ↔ (𝑓 ·Q 𝑦) <Q (𝑥 ·Q 𝑦)))
63 ltanqg 7513 . . . . . . 7 ((𝑤Q𝑣Q𝑢Q) → (𝑤 <Q 𝑣 ↔ (𝑢 +Q 𝑤) <Q (𝑢 +Q 𝑣)))
6463adantl 277 . . . . . 6 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) ∧ (𝑤Q𝑣Q𝑢Q)) → (𝑤 <Q 𝑣 ↔ (𝑢 +Q 𝑤) <Q (𝑢 +Q 𝑣)))
65 mulclnq 7489 . . . . . . 7 ((𝑓Q𝑦Q) → (𝑓 ·Q 𝑦) ∈ Q)
6612, 31, 65syl2anc 411 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑓 ·Q 𝑦) ∈ Q)
67 addcomnqg 7494 . . . . . . 7 ((𝑤Q𝑣Q) → (𝑤 +Q 𝑣) = (𝑣 +Q 𝑤))
6867adantl 277 . . . . . 6 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) ∧ (𝑤Q𝑣Q)) → (𝑤 +Q 𝑣) = (𝑣 +Q 𝑤))
6964, 66, 33, 25, 68caovord2d 6116 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑓 ·Q 𝑦) <Q (𝑥 ·Q 𝑦) ↔ ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
7062, 69bitrd 188 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑓 <Q 𝑥 ↔ ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
71 distrnqg 7500 . . . . . . 7 ((𝑓Q𝑦Q𝑧Q) → (𝑓 ·Q (𝑦 +Q 𝑧)) = ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
7212, 31, 18, 71syl3anc 1250 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑓 ·Q (𝑦 +Q 𝑧)) = ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
73 simprrl 539 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → 𝑓 ∈ (2nd𝐴))
7451, 52genppreclu 7628 . . . . . . . 8 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑓 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑧) ∈ (2nd ‘(𝐵 +P 𝐶))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
7574imp 124 . . . . . . 7 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑓 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑧) ∈ (2nd ‘(𝐵 +P 𝐶)))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
7637, 40, 73, 50, 75syl22anc 1251 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
7772, 76eqeltrrd 2283 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
78 prcunqu 7598 . . . . . 6 ((⟨(1st ‘(𝐴 ·P (𝐵 +P 𝐶))), (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))⟩ ∈ P ∧ ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))) → (((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
7957, 78sylan 283 . . . . 5 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))) → (((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
8042, 77, 79syl2anc 411 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
8170, 80sylbid 150 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑓 <Q 𝑥 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
8261, 81jaod 719 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 <Q 𝑓𝑓 <Q 𝑥) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
83 ltsonq 7511 . . . . 5 <Q Or Q
84 nqtri3or 7509 . . . . 5 ((𝑥Q𝑓Q) → (𝑥 <Q 𝑓𝑥 = 𝑓𝑓 <Q 𝑥))
8583, 84sotritrieq 4372 . . . 4 ((𝑥Q𝑓Q) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
868, 12, 85syl2anc 411 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
87 oveq1 5951 . . . . . . 7 (𝑥 = 𝑓 → (𝑥 ·Q 𝑧) = (𝑓 ·Q 𝑧))
8887oveq2d 5960 . . . . . 6 (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
8944, 88sylan9eq 2258 . . . . 5 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) ∧ 𝑥 = 𝑓) → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
9055adantr 276 . . . . 5 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) ∧ 𝑥 = 𝑓) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
9189, 90eqeltrrd 2283 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) ∧ 𝑥 = 𝑓) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
9291ex 115 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
9386, 92sylbird 170 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → (¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶)))))
94 ltdcnq 7510 . . . . 5 ((𝑥Q𝑓Q) → DECID 𝑥 <Q 𝑓)
95 ltdcnq 7510 . . . . . 6 ((𝑓Q𝑥Q) → DECID 𝑓 <Q 𝑥)
9695ancoms 268 . . . . 5 ((𝑥Q𝑓Q) → DECID 𝑓 <Q 𝑥)
97 dcor 938 . . . . 5 (DECID 𝑥 <Q 𝑓 → (DECID 𝑓 <Q 𝑥DECID (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
9894, 96, 97sylc 62 . . . 4 ((𝑥Q𝑓Q) → DECID (𝑥 <Q 𝑓𝑓 <Q 𝑥))
998, 12, 98syl2anc 411 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → DECID (𝑥 <Q 𝑓𝑓 <Q 𝑥))
100 df-dc 837 . . 3 (DECID (𝑥 <Q 𝑓𝑓 <Q 𝑥) ↔ ((𝑥 <Q 𝑓𝑓 <Q 𝑥) ∨ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
10199, 100sylib 122 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 <Q 𝑓𝑓 <Q 𝑥) ∨ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
10282, 93, 101mpjaod 720 1 (((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2176  cop 3636   class class class wbr 4044  cfv 5271  (class class class)co 5944  1st c1st 6224  2nd c2nd 6225  Qcnq 7393   +Q cplq 7395   ·Q cmq 7396   <Q cltq 7398  Pcnp 7404   +P cpp 7406   ·P cmp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-iplp 7581  df-imp 7582
This theorem is referenced by:  distrlem5pru  7700
  Copyright terms: Public domain W3C validator