ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpvlu GIF version

Theorem mpvlu 7734
Description: Value of multiplication on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
mpvlu ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)}⟩)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem mpvlu
Dummy variables 𝑓 𝑔 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-imp 7664 . 2 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑤) ∧ ∈ (1st𝑣) ∧ 𝑓 = (𝑔 ·Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑤) ∧ ∈ (2nd𝑣) ∧ 𝑓 = (𝑔 ·Q ))}⟩)
2 mulclnq 7571 . 2 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
31, 2genipv 7704 1 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wrex 2509  {crab 2512  cop 3669  cfv 5318  (class class class)co 6007  1st c1st 6290  2nd c2nd 6291  Qcnq 7475   ·Q cmq 7478  Pcnp 7486   ·P cmp 7489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-mi 7501  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-mqqs 7545  df-inp 7661  df-imp 7664
This theorem is referenced by:  mulcomprg  7775
  Copyright terms: Public domain W3C validator