| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpvlu | GIF version | ||
| Description: Value of multiplication on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| mpvlu | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1st ‘𝐴)∃𝑧 ∈ (1st ‘𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2nd ‘𝐴)∃𝑧 ∈ (2nd ‘𝐵)𝑥 = (𝑦 ·Q 𝑧)}〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-imp 7624 | . 2 ⊢ ·P = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑓 ∈ Q ∣ ∃𝑔 ∈ Q ∃ℎ ∈ Q (𝑔 ∈ (1st ‘𝑤) ∧ ℎ ∈ (1st ‘𝑣) ∧ 𝑓 = (𝑔 ·Q ℎ))}, {𝑓 ∈ Q ∣ ∃𝑔 ∈ Q ∃ℎ ∈ Q (𝑔 ∈ (2nd ‘𝑤) ∧ ℎ ∈ (2nd ‘𝑣) ∧ 𝑓 = (𝑔 ·Q ℎ))}〉) | |
| 2 | mulclnq 7531 | . 2 ⊢ ((𝑔 ∈ Q ∧ ℎ ∈ Q) → (𝑔 ·Q ℎ) ∈ Q) | |
| 3 | 1, 2 | genipv 7664 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1st ‘𝐴)∃𝑧 ∈ (1st ‘𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2nd ‘𝐴)∃𝑧 ∈ (2nd ‘𝐵)𝑥 = (𝑦 ·Q 𝑧)}〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ∃wrex 2489 {crab 2492 〈cop 3649 ‘cfv 5294 (class class class)co 5974 1st c1st 6254 2nd c2nd 6255 Qcnq 7435 ·Q cmq 7438 Pcnp 7446 ·P cmp 7449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-mi 7461 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-mqqs 7505 df-inp 7621 df-imp 7624 |
| This theorem is referenced by: mulcomprg 7735 |
| Copyright terms: Public domain | W3C validator |