ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsg2 GIF version

Theorem isnsg2 13589
Description: Weaken the condition of isnsg 13588 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
isnsg2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . 3 𝑋 = (Base‘𝐺)
2 isnsg.2 . . 3 + = (+g𝐺)
31, 2isnsg 13588 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)))
4 dfbi2 388 . . . . . . 7 (((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
54ralbii 2513 . . . . . 6 (∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
65ralbii 2513 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
7 r19.26-2 2636 . . . . 5 (∀𝑥𝑋𝑧𝑋 (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)) ↔ (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
86, 7bitri 184 . . . 4 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)))
9 oveq2 5962 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑥 + 𝑧) = (𝑥 + 𝑦))
109eleq1d 2275 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑥 + 𝑦) ∈ 𝑆))
11 oveq1 5961 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 + 𝑥) = (𝑦 + 𝑥))
1211eleq1d 2275 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
1310, 12imbi12d 234 . . . . . . 7 (𝑧 = 𝑦 → (((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
1413cbvralvw 2743 . . . . . 6 (∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
1514ralbii 2513 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
16 ralcom 2670 . . . . . 6 (∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑧𝑋𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆))
17 oveq2 5962 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑧 + 𝑥) = (𝑧 + 𝑦))
1817eleq1d 2275 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆))
19 oveq1 5961 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 + 𝑧) = (𝑦 + 𝑧))
2019eleq1d 2275 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑦 + 𝑧) ∈ 𝑆))
2118, 20imbi12d 234 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆)))
2221cbvralvw 2743 . . . . . . 7 (∀𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆))
2322ralbii 2513 . . . . . 6 (∀𝑧𝑋𝑥𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑧𝑋𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆))
24 oveq1 5961 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦))
2524eleq1d 2275 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑧 + 𝑦) ∈ 𝑆 ↔ (𝑥 + 𝑦) ∈ 𝑆))
26 oveq2 5962 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑦 + 𝑧) = (𝑦 + 𝑥))
2726eleq1d 2275 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
2825, 27imbi12d 234 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
2928ralbidv 2507 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
3029cbvralvw 2743 . . . . . 6 (∀𝑧𝑋𝑦𝑋 ((𝑧 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑧) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3116, 23, 303bitri 206 . . . . 5 (∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3215, 31anbi12i 460 . . . 4 ((∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 → (𝑧 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑧 + 𝑥) ∈ 𝑆 → (𝑥 + 𝑧) ∈ 𝑆)) ↔ (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
33 anidm 396 . . . 4 ((∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
348, 32, 333bitri 206 . . 3 (∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))
3534anbi2i 457 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
363, 35bitri 184 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  SubGrpcsubg 13553  NrmSGrpcnsg 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-ov 5957  df-inn 9050  df-2 9108  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-subg 13556  df-nsg 13557
This theorem is referenced by:  isnsg3  13593  subrngringnsg  14017
  Copyright terms: Public domain W3C validator