Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpli | GIF version |
Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
simpli.1 | ⊢ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
simpli | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpli.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
2 | simpl 108 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-ia1 105 |
This theorem is referenced by: biimp 117 biimpr 129 dfbi2 386 orc 702 pwundifss 4263 ssdomg 6744 negiso 8850 infrenegsupex 9532 xrnegiso 11203 infxrnegsupex 11204 cos01bnd 11699 cos1bnd 11700 cos2bnd 11701 sin4lt0 11707 egt2lt3 11720 epos 11721 ene1 11725 eap1 11726 slotslfn 12420 strslfvd 12435 strslfv2d 12436 strsl0 12442 setsslid 12444 setsslnid 12445 reeff1o 13344 pigt2lt4 13355 pire 13357 pipos 13359 sinhalfpi 13367 tan4thpi 13412 sincos3rdpi 13414 pigt3 13415 lgsdir2lem4 13582 lgsdir2lem5 13583 |
Copyright terms: Public domain | W3C validator |