![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpli | GIF version |
Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
simpli.1 | ⊢ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
simpli | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpli.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
2 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-ia1 106 |
This theorem is referenced by: biimp 118 biimpr 130 dfbi2 388 orc 713 pwundifss 4317 ssdomg 6834 negiso 8976 infrenegsupex 9662 xrnegiso 11408 infxrnegsupex 11409 cos01bnd 11904 cos1bnd 11905 cos2bnd 11906 sin4lt0 11913 egt2lt3 11926 epos 11927 ene1 11931 eap1 11932 slotslfn 12647 strslfvd 12663 strslfv2d 12664 strsl0 12670 setsslid 12672 setsslnid 12673 sravscag 13942 reeff1o 14949 pigt2lt4 14960 pire 14962 pipos 14964 sinhalfpi 14972 tan4thpi 15017 sincos3rdpi 15019 pigt3 15020 lgsdir2lem4 15188 lgsdir2lem5 15189 |
Copyright terms: Public domain | W3C validator |