![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpli | GIF version |
Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
simpli.1 | ⊢ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
simpli | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpli.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
2 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-ia1 106 |
This theorem is referenced by: biimp 118 biimpr 130 dfbi2 388 orc 713 pwundifss 4316 ssdomg 6832 negiso 8974 infrenegsupex 9659 xrnegiso 11405 infxrnegsupex 11406 cos01bnd 11901 cos1bnd 11902 cos2bnd 11903 sin4lt0 11910 egt2lt3 11923 epos 11924 ene1 11928 eap1 11929 slotslfn 12644 strslfvd 12660 strslfv2d 12661 strsl0 12667 setsslid 12669 setsslnid 12670 sravscag 13939 reeff1o 14908 pigt2lt4 14919 pire 14921 pipos 14923 sinhalfpi 14931 tan4thpi 14976 sincos3rdpi 14978 pigt3 14979 lgsdir2lem4 15147 lgsdir2lem5 15148 |
Copyright terms: Public domain | W3C validator |