![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq12i | GIF version |
Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 3285 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∪ cun 3128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 |
This theorem is referenced by: indir 3385 difundir 3389 symdif1 3401 unrab 3407 rabun2 3415 dfif6 3537 dfif3 3548 unopab 4083 xpundi 4683 xpundir 4684 xpun 4688 dmun 4835 resundi 4921 resundir 4922 cnvun 5035 rnun 5038 imaundi 5042 imaundir 5043 dmtpop 5105 coundi 5131 coundir 5132 unidmrn 5162 dfdm2 5164 mptun 5348 fpr 5699 fvsnun2 5715 sbthlemi5 6960 djuunr 7065 djuun 7066 casedm 7085 djudm 7104 djuassen 7216 fz0to3un2pr 10123 fz0to4untppr 10124 fzo0to42pr 10220 |
Copyright terms: Public domain | W3C validator |