![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq12i | GIF version |
Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 3284 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∪ cun 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 |
This theorem is referenced by: indir 3384 difundir 3388 symdif1 3400 unrab 3406 rabun2 3414 dfif6 3536 dfif3 3547 unopab 4082 xpundi 4682 xpundir 4683 xpun 4687 dmun 4834 resundi 4920 resundir 4921 cnvun 5034 rnun 5037 imaundi 5041 imaundir 5042 dmtpop 5104 coundi 5130 coundir 5131 unidmrn 5161 dfdm2 5163 mptun 5347 fpr 5698 fvsnun2 5714 sbthlemi5 6959 djuunr 7064 djuun 7065 casedm 7084 djudm 7103 djuassen 7215 fz0to3un2pr 10122 fz0to4untppr 10123 fzo0to42pr 10219 |
Copyright terms: Public domain | W3C validator |