| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12i | GIF version | ||
| Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| uneq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | uneq12 3330 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 |
| This theorem is referenced by: indir 3430 difundir 3434 symdif1 3446 unrab 3452 rabun2 3460 dfif6 3581 dfif3 3593 unopab 4139 xpundi 4749 xpundir 4750 xpun 4754 dmun 4904 resundi 4991 resundir 4992 cnvun 5107 rnun 5110 imaundi 5114 imaundir 5115 dmtpop 5177 coundi 5203 coundir 5204 unidmrn 5234 dfdm2 5236 mptun 5427 fpr 5789 fvsnun2 5805 sbthlemi5 7089 djuunr 7194 djuun 7195 casedm 7214 djudm 7233 djuassen 7360 fz0to3un2pr 10280 fz0to4untppr 10281 fzo0to42pr 10386 xnn0nnen 10619 |
| Copyright terms: Public domain | W3C validator |