Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq12i | GIF version |
Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 3276 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 424 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∪ cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 |
This theorem is referenced by: indir 3376 difundir 3380 symdif1 3392 unrab 3398 rabun2 3406 dfif6 3528 dfif3 3539 unopab 4068 xpundi 4667 xpundir 4668 xpun 4672 dmun 4818 resundi 4904 resundir 4905 cnvun 5016 rnun 5019 imaundi 5023 imaundir 5024 dmtpop 5086 coundi 5112 coundir 5113 unidmrn 5143 dfdm2 5145 mptun 5329 fpr 5678 fvsnun2 5694 sbthlemi5 6938 djuunr 7043 djuun 7044 casedm 7063 djudm 7082 djuassen 7194 fz0to3un2pr 10079 fz0to4untppr 10080 fzo0to42pr 10176 |
Copyright terms: Public domain | W3C validator |