| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > uneq12i | GIF version | ||
| Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) | 
| Ref | Expression | 
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 | 
| uneq12i.2 | ⊢ 𝐶 = 𝐷 | 
| Ref | Expression | 
|---|---|
| uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | uneq12 3312 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∪ cun 3155 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 | 
| This theorem is referenced by: indir 3412 difundir 3416 symdif1 3428 unrab 3434 rabun2 3442 dfif6 3563 dfif3 3574 unopab 4112 xpundi 4719 xpundir 4720 xpun 4724 dmun 4873 resundi 4959 resundir 4960 cnvun 5075 rnun 5078 imaundi 5082 imaundir 5083 dmtpop 5145 coundi 5171 coundir 5172 unidmrn 5202 dfdm2 5204 mptun 5389 fpr 5744 fvsnun2 5760 sbthlemi5 7027 djuunr 7132 djuun 7133 casedm 7152 djudm 7171 djuassen 7284 fz0to3un2pr 10198 fz0to4untppr 10199 fzo0to42pr 10296 xnn0nnen 10529 | 
| Copyright terms: Public domain | W3C validator |