Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq12i | GIF version |
Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 3270 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 423 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∪ cun 3113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 |
This theorem is referenced by: indir 3370 difundir 3374 symdif1 3386 unrab 3392 rabun2 3400 dfif6 3521 dfif3 3532 unopab 4060 xpundi 4659 xpundir 4660 xpun 4664 dmun 4810 resundi 4896 resundir 4897 cnvun 5008 rnun 5011 imaundi 5015 imaundir 5016 dmtpop 5078 coundi 5104 coundir 5105 unidmrn 5135 dfdm2 5137 mptun 5318 fpr 5666 fvsnun2 5682 sbthlemi5 6922 djuunr 7027 djuun 7028 casedm 7047 djudm 7066 djuassen 7169 fz0to3un2pr 10054 fz0to4untppr 10055 fzo0to42pr 10151 |
Copyright terms: Public domain | W3C validator |