| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12i | GIF version | ||
| Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| uneq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | uneq12 3322 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: indir 3422 difundir 3426 symdif1 3438 unrab 3444 rabun2 3452 dfif6 3573 dfif3 3584 unopab 4123 xpundi 4731 xpundir 4732 xpun 4736 dmun 4885 resundi 4972 resundir 4973 cnvun 5088 rnun 5091 imaundi 5095 imaundir 5096 dmtpop 5158 coundi 5184 coundir 5185 unidmrn 5215 dfdm2 5217 mptun 5407 fpr 5766 fvsnun2 5782 sbthlemi5 7063 djuunr 7168 djuun 7169 casedm 7188 djudm 7207 djuassen 7329 fz0to3un2pr 10245 fz0to4untppr 10246 fzo0to42pr 10349 xnn0nnen 10582 |
| Copyright terms: Public domain | W3C validator |