| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12i | GIF version | ||
| Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| uneq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | uneq12 3313 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: indir 3413 difundir 3417 symdif1 3429 unrab 3435 rabun2 3443 dfif6 3564 dfif3 3575 unopab 4113 xpundi 4720 xpundir 4721 xpun 4725 dmun 4874 resundi 4960 resundir 4961 cnvun 5076 rnun 5079 imaundi 5083 imaundir 5084 dmtpop 5146 coundi 5172 coundir 5173 unidmrn 5203 dfdm2 5205 mptun 5392 fpr 5747 fvsnun2 5763 sbthlemi5 7036 djuunr 7141 djuun 7142 casedm 7161 djudm 7180 djuassen 7300 fz0to3un2pr 10215 fz0to4untppr 10216 fzo0to42pr 10313 xnn0nnen 10546 |
| Copyright terms: Public domain | W3C validator |