Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12i GIF version

Theorem uneq12i 3259
 Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
uneq1i.1 𝐴 = 𝐵
uneq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
uneq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem uneq12i
StepHypRef Expression
1 uneq1i.1 . 2 𝐴 = 𝐵
2 uneq12i.2 . 2 𝐶 = 𝐷
3 uneq12 3256 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3mp2an 423 1 (𝐴𝐶) = (𝐵𝐷)
 Colors of variables: wff set class Syntax hints:   = wceq 1335   ∪ cun 3100 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106 This theorem is referenced by:  indir  3356  difundir  3360  symdif1  3372  unrab  3378  rabun2  3386  dfif6  3507  dfif3  3518  unopab  4043  xpundi  4639  xpundir  4640  xpun  4644  dmun  4790  resundi  4876  resundir  4877  cnvun  4988  rnun  4991  imaundi  4995  imaundir  4996  dmtpop  5058  coundi  5084  coundir  5085  unidmrn  5115  dfdm2  5117  mptun  5298  fpr  5646  fvsnun2  5662  sbthlemi5  6898  djuunr  7000  djuun  7001  casedm  7020  djudm  7039  djuassen  7135  fzo0to42pr  10101
 Copyright terms: Public domain W3C validator