ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12i GIF version

Theorem uneq12i 3192
Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
uneq1i.1 𝐴 = 𝐵
uneq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
uneq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem uneq12i
StepHypRef Expression
1 uneq1i.1 . 2 𝐴 = 𝐵
2 uneq12i.2 . 2 𝐶 = 𝐷
3 uneq12 3189 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3mp2an 420 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1312  cun 3033
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-un 3039
This theorem is referenced by:  indir  3289  difundir  3293  symdif1  3305  unrab  3311  rabun2  3319  dfif6  3440  dfif3  3451  unopab  3965  xpundi  4553  xpundir  4554  xpun  4558  dmun  4704  resundi  4788  resundir  4789  cnvun  4900  rnun  4903  imaundi  4907  imaundir  4908  dmtpop  4970  coundi  4996  coundir  4997  unidmrn  5027  dfdm2  5029  mptun  5210  fpr  5554  fvsnun2  5570  sbthlemi5  6799  djuunr  6901  djuun  6902  casedm  6921  djudm  6940  djuassen  7018  fzo0to42pr  9884
  Copyright terms: Public domain W3C validator