ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12i GIF version

Theorem uneq12i 3315
Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
uneq1i.1 𝐴 = 𝐵
uneq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
uneq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem uneq12i
StepHypRef Expression
1 uneq1i.1 . 2 𝐴 = 𝐵
2 uneq12i.2 . 2 𝐶 = 𝐷
3 uneq12 3312 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3mp2an 426 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  indir  3412  difundir  3416  symdif1  3428  unrab  3434  rabun2  3442  dfif6  3563  dfif3  3574  unopab  4112  xpundi  4719  xpundir  4720  xpun  4724  dmun  4873  resundi  4959  resundir  4960  cnvun  5075  rnun  5078  imaundi  5082  imaundir  5083  dmtpop  5145  coundi  5171  coundir  5172  unidmrn  5202  dfdm2  5204  mptun  5389  fpr  5744  fvsnun2  5760  sbthlemi5  7027  djuunr  7132  djuun  7133  casedm  7152  djudm  7171  djuassen  7284  fz0to3un2pr  10198  fz0to4untppr  10199  fzo0to42pr  10296  xnn0nnen  10529
  Copyright terms: Public domain W3C validator