ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12i GIF version

Theorem uneq12i 3333
Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
uneq1i.1 𝐴 = 𝐵
uneq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
uneq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem uneq12i
StepHypRef Expression
1 uneq1i.1 . 2 𝐴 = 𝐵
2 uneq12i.2 . 2 𝐶 = 𝐷
3 uneq12 3330 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3mp2an 426 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178
This theorem is referenced by:  indir  3430  difundir  3434  symdif1  3446  unrab  3452  rabun2  3460  dfif6  3581  dfif3  3593  unopab  4139  xpundi  4749  xpundir  4750  xpun  4754  dmun  4904  resundi  4991  resundir  4992  cnvun  5107  rnun  5110  imaundi  5114  imaundir  5115  dmtpop  5177  coundi  5203  coundir  5204  unidmrn  5234  dfdm2  5236  mptun  5427  fpr  5789  fvsnun2  5805  sbthlemi5  7089  djuunr  7194  djuun  7195  casedm  7214  djudm  7233  djuassen  7360  fz0to3un2pr  10280  fz0to4untppr  10281  fzo0to42pr  10386  xnn0nnen  10619
  Copyright terms: Public domain W3C validator