ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diftpsn3 GIF version

Theorem diftpsn3 3763
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
diftpsn3 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})

Proof of Theorem diftpsn3
StepHypRef Expression
1 df-tp 3630 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
21a1i 9 . . 3 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
32difeq1d 3280 . 2 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}))
4 difundir 3416 . . 3 (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶}))
54a1i 9 . 2 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})))
6 df-pr 3629 . . . . . . . . 9 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
76a1i 9 . . . . . . . 8 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}))
87ineq1d 3363 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∪ {𝐵}) ∩ {𝐶}))
9 incom 3355 . . . . . . . . 9 (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = ({𝐶} ∩ ({𝐴} ∪ {𝐵}))
10 indi 3410 . . . . . . . . 9 ({𝐶} ∩ ({𝐴} ∪ {𝐵})) = (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵}))
119, 10eqtri 2217 . . . . . . . 8 (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵}))
1211a1i 9 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵})))
13 necom 2451 . . . . . . . . . . 11 (𝐴𝐶𝐶𝐴)
14 disjsn2 3685 . . . . . . . . . . 11 (𝐶𝐴 → ({𝐶} ∩ {𝐴}) = ∅)
1513, 14sylbi 121 . . . . . . . . . 10 (𝐴𝐶 → ({𝐶} ∩ {𝐴}) = ∅)
1615adantr 276 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∩ {𝐴}) = ∅)
17 necom 2451 . . . . . . . . . . 11 (𝐵𝐶𝐶𝐵)
18 disjsn2 3685 . . . . . . . . . . 11 (𝐶𝐵 → ({𝐶} ∩ {𝐵}) = ∅)
1917, 18sylbi 121 . . . . . . . . . 10 (𝐵𝐶 → ({𝐶} ∩ {𝐵}) = ∅)
2019adantl 277 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∩ {𝐵}) = ∅)
2116, 20uneq12d 3318 . . . . . . . 8 ((𝐴𝐶𝐵𝐶) → (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵})) = (∅ ∪ ∅))
22 unidm 3306 . . . . . . . 8 (∅ ∪ ∅) = ∅
2321, 22eqtrdi 2245 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵})) = ∅)
248, 12, 233eqtrd 2233 . . . . . 6 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
25 disj3 3503 . . . . . 6 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶}))
2624, 25sylib 122 . . . . 5 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶}))
2726eqcomd 2202 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∖ {𝐶}) = {𝐴, 𝐵})
28 difid 3519 . . . . 5 ({𝐶} ∖ {𝐶}) = ∅
2928a1i 9 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∖ {𝐶}) = ∅)
3027, 29uneq12d 3318 . . 3 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵} ∪ ∅))
31 un0 3484 . . 3 ({𝐴, 𝐵} ∪ ∅) = {𝐴, 𝐵}
3230, 31eqtrdi 2245 . 2 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = {𝐴, 𝐵})
333, 5, 323eqtrd 2233 1 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wne 2367  cdif 3154  cun 3155  cin 3156  c0 3450  {csn 3622  {cpr 3623  {ctp 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629  df-tp 3630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator