ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashdifpr GIF version

Theorem hashdifpr 10733
Description: The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.)
Assertion
Ref Expression
hashdifpr ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2))

Proof of Theorem hashdifpr
StepHypRef Expression
1 difpr 3715 . . . 4 (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
21a1i 9 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}))
32fveq2d 5490 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})))
4 simpl 108 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐴 ∈ Fin)
5 snfig 6780 . . . . . 6 (𝐵𝐴 → {𝐵} ∈ Fin)
653ad2ant1 1008 . . . . 5 ((𝐵𝐴𝐶𝐴𝐵𝐶) → {𝐵} ∈ Fin)
76adantl 275 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → {𝐵} ∈ Fin)
8 snssi 3717 . . . . . 6 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
983ad2ant1 1008 . . . . 5 ((𝐵𝐴𝐶𝐴𝐵𝐶) → {𝐵} ⊆ 𝐴)
109adantl 275 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → {𝐵} ⊆ 𝐴)
11 diffifi 6860 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin ∧ {𝐵} ⊆ 𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
124, 7, 10, 11syl3anc 1228 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐴 ∖ {𝐵}) ∈ Fin)
13 simpr2 994 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐶𝐴)
14 simpr3 995 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐵𝐶)
1514necomd 2422 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐶𝐵)
16 eldifsn 3703 . . . 4 (𝐶 ∈ (𝐴 ∖ {𝐵}) ↔ (𝐶𝐴𝐶𝐵))
1713, 15, 16sylanbrc 414 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐶 ∈ (𝐴 ∖ {𝐵}))
18 hashdifsn 10732 . . 3 (((𝐴 ∖ {𝐵}) ∈ Fin ∧ 𝐶 ∈ (𝐴 ∖ {𝐵})) → (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})) = ((♯‘(𝐴 ∖ {𝐵})) − 1))
1912, 17, 18syl2anc 409 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})) = ((♯‘(𝐴 ∖ {𝐵})) − 1))
20 hashdifsn 10732 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1))
21203ad2antr1 1152 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1))
2221oveq1d 5857 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → ((♯‘(𝐴 ∖ {𝐵})) − 1) = (((♯‘𝐴) − 1) − 1))
23 hashcl 10694 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
2423nn0cnd 9169 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
25 sub1m1 9107 . . . . 5 ((♯‘𝐴) ∈ ℂ → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2))
2624, 25syl 14 . . . 4 (𝐴 ∈ Fin → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2))
2726adantr 274 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2))
2822, 27eqtrd 2198 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → ((♯‘(𝐴 ∖ {𝐵})) − 1) = ((♯‘𝐴) − 2))
293, 19, 283eqtrd 2202 1 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wne 2336  cdif 3113  wss 3116  {csn 3576  {cpr 3577  cfv 5188  (class class class)co 5842  Fincfn 6706  cc 7751  1c1 7754  cmin 8069  2c2 8908  chash 10688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-ihash 10689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator