ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashdifpr GIF version

Theorem hashdifpr 11029
Description: The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.)
Assertion
Ref Expression
hashdifpr ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2))

Proof of Theorem hashdifpr
StepHypRef Expression
1 difpr 3809 . . . 4 (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
21a1i 9 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}))
32fveq2d 5627 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})))
4 simpl 109 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐴 ∈ Fin)
5 snfig 6957 . . . . . 6 (𝐵𝐴 → {𝐵} ∈ Fin)
653ad2ant1 1042 . . . . 5 ((𝐵𝐴𝐶𝐴𝐵𝐶) → {𝐵} ∈ Fin)
76adantl 277 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → {𝐵} ∈ Fin)
8 snssi 3811 . . . . . 6 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
983ad2ant1 1042 . . . . 5 ((𝐵𝐴𝐶𝐴𝐵𝐶) → {𝐵} ⊆ 𝐴)
109adantl 277 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → {𝐵} ⊆ 𝐴)
11 diffifi 7044 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin ∧ {𝐵} ⊆ 𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
124, 7, 10, 11syl3anc 1271 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐴 ∖ {𝐵}) ∈ Fin)
13 simpr2 1028 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐶𝐴)
14 simpr3 1029 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐵𝐶)
1514necomd 2486 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐶𝐵)
16 eldifsn 3794 . . . 4 (𝐶 ∈ (𝐴 ∖ {𝐵}) ↔ (𝐶𝐴𝐶𝐵))
1713, 15, 16sylanbrc 417 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐶 ∈ (𝐴 ∖ {𝐵}))
18 hashdifsn 11028 . . 3 (((𝐴 ∖ {𝐵}) ∈ Fin ∧ 𝐶 ∈ (𝐴 ∖ {𝐵})) → (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})) = ((♯‘(𝐴 ∖ {𝐵})) − 1))
1912, 17, 18syl2anc 411 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})) = ((♯‘(𝐴 ∖ {𝐵})) − 1))
20 hashdifsn 11028 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1))
21203ad2antr1 1186 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1))
2221oveq1d 6009 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → ((♯‘(𝐴 ∖ {𝐵})) − 1) = (((♯‘𝐴) − 1) − 1))
23 hashcl 10990 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
2423nn0cnd 9412 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
25 sub1m1 9350 . . . . 5 ((♯‘𝐴) ∈ ℂ → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2))
2624, 25syl 14 . . . 4 (𝐴 ∈ Fin → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2))
2726adantr 276 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2))
2822, 27eqtrd 2262 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → ((♯‘(𝐴 ∖ {𝐵})) − 1) = ((♯‘𝐴) − 2))
293, 19, 283eqtrd 2266 1 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wne 2400  cdif 3194  wss 3197  {csn 3666  {cpr 3667  cfv 5314  (class class class)co 5994  Fincfn 6877  cc 7985  1c1 7988  cmin 8305  2c2 9149  chash 10984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-ihash 10985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator