ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashdifpr GIF version

Theorem hashdifpr 10982
Description: The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.)
Assertion
Ref Expression
hashdifpr ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2))

Proof of Theorem hashdifpr
StepHypRef Expression
1 difpr 3780 . . . 4 (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
21a1i 9 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}))
32fveq2d 5592 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})))
4 simpl 109 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐴 ∈ Fin)
5 snfig 6919 . . . . . 6 (𝐵𝐴 → {𝐵} ∈ Fin)
653ad2ant1 1021 . . . . 5 ((𝐵𝐴𝐶𝐴𝐵𝐶) → {𝐵} ∈ Fin)
76adantl 277 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → {𝐵} ∈ Fin)
8 snssi 3782 . . . . . 6 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
983ad2ant1 1021 . . . . 5 ((𝐵𝐴𝐶𝐴𝐵𝐶) → {𝐵} ⊆ 𝐴)
109adantl 277 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → {𝐵} ⊆ 𝐴)
11 diffifi 7005 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin ∧ {𝐵} ⊆ 𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
124, 7, 10, 11syl3anc 1250 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐴 ∖ {𝐵}) ∈ Fin)
13 simpr2 1007 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐶𝐴)
14 simpr3 1008 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐵𝐶)
1514necomd 2463 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐶𝐵)
16 eldifsn 3765 . . . 4 (𝐶 ∈ (𝐴 ∖ {𝐵}) ↔ (𝐶𝐴𝐶𝐵))
1713, 15, 16sylanbrc 417 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → 𝐶 ∈ (𝐴 ∖ {𝐵}))
18 hashdifsn 10981 . . 3 (((𝐴 ∖ {𝐵}) ∈ Fin ∧ 𝐶 ∈ (𝐴 ∖ {𝐵})) → (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})) = ((♯‘(𝐴 ∖ {𝐵})) − 1))
1912, 17, 18syl2anc 411 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})) = ((♯‘(𝐴 ∖ {𝐵})) − 1))
20 hashdifsn 10981 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1))
21203ad2antr1 1165 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1))
2221oveq1d 5971 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → ((♯‘(𝐴 ∖ {𝐵})) − 1) = (((♯‘𝐴) − 1) − 1))
23 hashcl 10943 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
2423nn0cnd 9365 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
25 sub1m1 9303 . . . . 5 ((♯‘𝐴) ∈ ℂ → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2))
2624, 25syl 14 . . . 4 (𝐴 ∈ Fin → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2))
2726adantr 276 . . 3 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2))
2822, 27eqtrd 2239 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → ((♯‘(𝐴 ∖ {𝐵})) − 1) = ((♯‘𝐴) − 2))
293, 19, 283eqtrd 2243 1 ((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wne 2377  cdif 3167  wss 3170  {csn 3637  {cpr 3638  cfv 5279  (class class class)co 5956  Fincfn 6839  cc 7938  1c1 7941  cmin 8258  2c2 9102  chash 10937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-irdg 6468  df-frec 6489  df-1o 6514  df-oadd 6518  df-er 6632  df-en 6840  df-dom 6841  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-2 9110  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-ihash 10938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator