| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashdifpr | GIF version | ||
| Description: The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.) |
| Ref | Expression |
|---|---|
| hashdifpr | ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difpr 3809 | . . . 4 ⊢ (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶}) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})) |
| 3 | 2 | fveq2d 5627 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶}))) |
| 4 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → 𝐴 ∈ Fin) | |
| 5 | snfig 6957 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ∈ Fin) | |
| 6 | 5 | 3ad2ant1 1042 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶) → {𝐵} ∈ Fin) |
| 7 | 6 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → {𝐵} ∈ Fin) |
| 8 | snssi 3811 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 9 | 8 | 3ad2ant1 1042 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶) → {𝐵} ⊆ 𝐴) |
| 10 | 9 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → {𝐵} ⊆ 𝐴) |
| 11 | diffifi 7044 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin ∧ {𝐵} ⊆ 𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin) | |
| 12 | 4, 7, 10, 11 | syl3anc 1271 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (𝐴 ∖ {𝐵}) ∈ Fin) |
| 13 | simpr2 1028 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → 𝐶 ∈ 𝐴) | |
| 14 | simpr3 1029 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → 𝐵 ≠ 𝐶) | |
| 15 | 14 | necomd 2486 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → 𝐶 ≠ 𝐵) |
| 16 | eldifsn 3794 | . . . 4 ⊢ (𝐶 ∈ (𝐴 ∖ {𝐵}) ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ≠ 𝐵)) | |
| 17 | 13, 15, 16 | sylanbrc 417 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → 𝐶 ∈ (𝐴 ∖ {𝐵})) |
| 18 | hashdifsn 11028 | . . 3 ⊢ (((𝐴 ∖ {𝐵}) ∈ Fin ∧ 𝐶 ∈ (𝐴 ∖ {𝐵})) → (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})) = ((♯‘(𝐴 ∖ {𝐵})) − 1)) | |
| 19 | 12, 17, 18 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘((𝐴 ∖ {𝐵}) ∖ {𝐶})) = ((♯‘(𝐴 ∖ {𝐵})) − 1)) |
| 20 | hashdifsn 11028 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) | |
| 21 | 20 | 3ad2antr1 1186 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) |
| 22 | 21 | oveq1d 6009 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → ((♯‘(𝐴 ∖ {𝐵})) − 1) = (((♯‘𝐴) − 1) − 1)) |
| 23 | hashcl 10990 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 24 | 23 | nn0cnd 9412 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ) |
| 25 | sub1m1 9350 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℂ → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2)) | |
| 26 | 24, 25 | syl 14 | . . . 4 ⊢ (𝐴 ∈ Fin → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2)) |
| 27 | 26 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (((♯‘𝐴) − 1) − 1) = ((♯‘𝐴) − 2)) |
| 28 | 22, 27 | eqtrd 2262 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → ((♯‘(𝐴 ∖ {𝐵})) − 1) = ((♯‘𝐴) − 2)) |
| 29 | 3, 19, 28 | 3eqtrd 2266 | 1 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 ⊆ wss 3197 {csn 3666 {cpr 3667 ‘cfv 5314 (class class class)co 5994 Fincfn 6877 ℂcc 7985 1c1 7988 − cmin 8305 2c2 9149 ♯chash 10984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-ihash 10985 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |