ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef GIF version

Theorem casef 7149
Description: The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef.f (𝜑𝐹:𝐴𝑋)
casef.g (𝜑𝐺:𝐵𝑋)
Assertion
Ref Expression
casef (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)

Proof of Theorem casef
StepHypRef Expression
1 casef.f . . . . 5 (𝜑𝐹:𝐴𝑋)
2 ffun 5407 . . . . 5 (𝐹:𝐴𝑋 → Fun 𝐹)
31, 2syl 14 . . . 4 (𝜑 → Fun 𝐹)
4 casef.g . . . . 5 (𝜑𝐺:𝐵𝑋)
5 ffun 5407 . . . . 5 (𝐺:𝐵𝑋 → Fun 𝐺)
64, 5syl 14 . . . 4 (𝜑 → Fun 𝐺)
73, 6casefun 7146 . . 3 (𝜑 → Fun case(𝐹, 𝐺))
8 caserel 7148 . . . 4 case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺))
9 ssid 3200 . . . . 5 (dom 𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺)
10 frn 5413 . . . . . . 7 (𝐹:𝐴𝑋 → ran 𝐹𝑋)
111, 10syl 14 . . . . . 6 (𝜑 → ran 𝐹𝑋)
12 frn 5413 . . . . . . 7 (𝐺:𝐵𝑋 → ran 𝐺𝑋)
134, 12syl 14 . . . . . 6 (𝜑 → ran 𝐺𝑋)
1411, 13unssd 3336 . . . . 5 (𝜑 → (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋)
15 xpss12 4767 . . . . 5 (((dom 𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺) ∧ (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋) → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
169, 14, 15sylancr 414 . . . 4 (𝜑 → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
178, 16sstrid 3191 . . 3 (𝜑 → case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
18 funssxp 5424 . . . 4 ((Fun case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) ↔ (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ∧ dom case(𝐹, 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺)))
1918simplbi 274 . . 3 ((Fun case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋)
207, 17, 19syl2anc 411 . 2 (𝜑 → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋)
21 casedm 7147 . . . 4 dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
22 fdm 5410 . . . . . 6 (𝐹:𝐴𝑋 → dom 𝐹 = 𝐴)
231, 22syl 14 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
24 fdm 5410 . . . . . 6 (𝐺:𝐵𝑋 → dom 𝐺 = 𝐵)
254, 24syl 14 . . . . 5 (𝜑 → dom 𝐺 = 𝐵)
26 djueq12 7100 . . . . 5 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ⊔ dom 𝐺) = (𝐴𝐵))
2723, 25, 26syl2anc 411 . . . 4 (𝜑 → (dom 𝐹 ⊔ dom 𝐺) = (𝐴𝐵))
2821, 27eqtrid 2238 . . 3 (𝜑 → dom case(𝐹, 𝐺) = (𝐴𝐵))
2928feq2d 5392 . 2 (𝜑 → (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ↔ case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋))
3020, 29mpbid 147 1 (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  cun 3152  wss 3154   × cxp 4658  dom cdm 4660  ran crn 4661  Fun wfun 5249  wf 5251  cdju 7098  casecdjucase 7144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by:  casef1  7151  omp1eomlem  7155  ctm  7170
  Copyright terms: Public domain W3C validator