ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef GIF version

Theorem casef 6888
Description: The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef.f (𝜑𝐹:𝐴𝑋)
casef.g (𝜑𝐺:𝐵𝑋)
Assertion
Ref Expression
casef (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)

Proof of Theorem casef
StepHypRef Expression
1 casef.f . . . . 5 (𝜑𝐹:𝐴𝑋)
2 ffun 5211 . . . . 5 (𝐹:𝐴𝑋 → Fun 𝐹)
31, 2syl 14 . . . 4 (𝜑 → Fun 𝐹)
4 casef.g . . . . 5 (𝜑𝐺:𝐵𝑋)
5 ffun 5211 . . . . 5 (𝐺:𝐵𝑋 → Fun 𝐺)
64, 5syl 14 . . . 4 (𝜑 → Fun 𝐺)
73, 6casefun 6885 . . 3 (𝜑 → Fun case(𝐹, 𝐺))
8 caserel 6887 . . . 4 case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺))
9 ssid 3067 . . . . 5 (dom 𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺)
10 frn 5217 . . . . . . 7 (𝐹:𝐴𝑋 → ran 𝐹𝑋)
111, 10syl 14 . . . . . 6 (𝜑 → ran 𝐹𝑋)
12 frn 5217 . . . . . . 7 (𝐺:𝐵𝑋 → ran 𝐺𝑋)
134, 12syl 14 . . . . . 6 (𝜑 → ran 𝐺𝑋)
1411, 13unssd 3199 . . . . 5 (𝜑 → (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋)
15 xpss12 4584 . . . . 5 (((dom 𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺) ∧ (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋) → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
169, 14, 15sylancr 408 . . . 4 (𝜑 → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
178, 16syl5ss 3058 . . 3 (𝜑 → case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
18 funssxp 5228 . . . 4 ((Fun case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) ↔ (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ∧ dom case(𝐹, 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺)))
1918simplbi 270 . . 3 ((Fun case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋)
207, 17, 19syl2anc 406 . 2 (𝜑 → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋)
21 casedm 6886 . . . 4 dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
22 fdm 5214 . . . . . 6 (𝐹:𝐴𝑋 → dom 𝐹 = 𝐴)
231, 22syl 14 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
24 fdm 5214 . . . . . 6 (𝐺:𝐵𝑋 → dom 𝐺 = 𝐵)
254, 24syl 14 . . . . 5 (𝜑 → dom 𝐺 = 𝐵)
26 djueq12 6839 . . . . 5 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ⊔ dom 𝐺) = (𝐴𝐵))
2723, 25, 26syl2anc 406 . . . 4 (𝜑 → (dom 𝐹 ⊔ dom 𝐺) = (𝐴𝐵))
2821, 27syl5eq 2144 . . 3 (𝜑 → dom case(𝐹, 𝐺) = (𝐴𝐵))
2928feq2d 5196 . 2 (𝜑 → (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ↔ case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋))
3020, 29mpbid 146 1 (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  cun 3019  wss 3021   × cxp 4475  dom cdm 4477  ran crn 4478  Fun wfun 5053  wf 5055  cdju 6837  casecdjucase 6883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-1st 5969  df-2nd 5970  df-1o 6243  df-dju 6838  df-inl 6847  df-inr 6848  df-case 6884
This theorem is referenced by:  casef1  6890  omp1eomlem  6894  ctm  6909
  Copyright terms: Public domain W3C validator