ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef GIF version

Theorem casef 7077
Description: The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef.f (𝜑𝐹:𝐴𝑋)
casef.g (𝜑𝐺:𝐵𝑋)
Assertion
Ref Expression
casef (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)

Proof of Theorem casef
StepHypRef Expression
1 casef.f . . . . 5 (𝜑𝐹:𝐴𝑋)
2 ffun 5360 . . . . 5 (𝐹:𝐴𝑋 → Fun 𝐹)
31, 2syl 14 . . . 4 (𝜑 → Fun 𝐹)
4 casef.g . . . . 5 (𝜑𝐺:𝐵𝑋)
5 ffun 5360 . . . . 5 (𝐺:𝐵𝑋 → Fun 𝐺)
64, 5syl 14 . . . 4 (𝜑 → Fun 𝐺)
73, 6casefun 7074 . . 3 (𝜑 → Fun case(𝐹, 𝐺))
8 caserel 7076 . . . 4 case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺))
9 ssid 3173 . . . . 5 (dom 𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺)
10 frn 5366 . . . . . . 7 (𝐹:𝐴𝑋 → ran 𝐹𝑋)
111, 10syl 14 . . . . . 6 (𝜑 → ran 𝐹𝑋)
12 frn 5366 . . . . . . 7 (𝐺:𝐵𝑋 → ran 𝐺𝑋)
134, 12syl 14 . . . . . 6 (𝜑 → ran 𝐺𝑋)
1411, 13unssd 3309 . . . . 5 (𝜑 → (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋)
15 xpss12 4727 . . . . 5 (((dom 𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺) ∧ (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋) → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
169, 14, 15sylancr 414 . . . 4 (𝜑 → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
178, 16sstrid 3164 . . 3 (𝜑 → case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
18 funssxp 5377 . . . 4 ((Fun case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) ↔ (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ∧ dom case(𝐹, 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺)))
1918simplbi 274 . . 3 ((Fun case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋)
207, 17, 19syl2anc 411 . 2 (𝜑 → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋)
21 casedm 7075 . . . 4 dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
22 fdm 5363 . . . . . 6 (𝐹:𝐴𝑋 → dom 𝐹 = 𝐴)
231, 22syl 14 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
24 fdm 5363 . . . . . 6 (𝐺:𝐵𝑋 → dom 𝐺 = 𝐵)
254, 24syl 14 . . . . 5 (𝜑 → dom 𝐺 = 𝐵)
26 djueq12 7028 . . . . 5 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ⊔ dom 𝐺) = (𝐴𝐵))
2723, 25, 26syl2anc 411 . . . 4 (𝜑 → (dom 𝐹 ⊔ dom 𝐺) = (𝐴𝐵))
2821, 27eqtrid 2220 . . 3 (𝜑 → dom case(𝐹, 𝐺) = (𝐴𝐵))
2928feq2d 5345 . 2 (𝜑 → (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ↔ case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋))
3020, 29mpbid 147 1 (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  cun 3125  wss 3127   × cxp 4618  dom cdm 4620  ran crn 4621  Fun wfun 5202  wf 5204  cdju 7026  casecdjucase 7072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-1st 6131  df-2nd 6132  df-1o 6407  df-dju 7027  df-inl 7036  df-inr 7037  df-case 7073
This theorem is referenced by:  casef1  7079  omp1eomlem  7083  ctm  7098
  Copyright terms: Public domain W3C validator