Proof of Theorem casef
| Step | Hyp | Ref
 | Expression | 
| 1 |   | casef.f | 
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝑋) | 
| 2 |   | ffun 5410 | 
. . . . 5
⊢ (𝐹:𝐴⟶𝑋 → Fun 𝐹) | 
| 3 | 1, 2 | syl 14 | 
. . . 4
⊢ (𝜑 → Fun 𝐹) | 
| 4 |   | casef.g | 
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝑋) | 
| 5 |   | ffun 5410 | 
. . . . 5
⊢ (𝐺:𝐵⟶𝑋 → Fun 𝐺) | 
| 6 | 4, 5 | syl 14 | 
. . . 4
⊢ (𝜑 → Fun 𝐺) | 
| 7 | 3, 6 | casefun 7151 | 
. . 3
⊢ (𝜑 → Fun case(𝐹, 𝐺)) | 
| 8 |   | caserel 7153 | 
. . . 4
⊢
case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) | 
| 9 |   | ssid 3203 | 
. . . . 5
⊢ (dom
𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺) | 
| 10 |   | frn 5416 | 
. . . . . . 7
⊢ (𝐹:𝐴⟶𝑋 → ran 𝐹 ⊆ 𝑋) | 
| 11 | 1, 10 | syl 14 | 
. . . . . 6
⊢ (𝜑 → ran 𝐹 ⊆ 𝑋) | 
| 12 |   | frn 5416 | 
. . . . . . 7
⊢ (𝐺:𝐵⟶𝑋 → ran 𝐺 ⊆ 𝑋) | 
| 13 | 4, 12 | syl 14 | 
. . . . . 6
⊢ (𝜑 → ran 𝐺 ⊆ 𝑋) | 
| 14 | 11, 13 | unssd 3339 | 
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋) | 
| 15 |   | xpss12 4770 | 
. . . . 5
⊢ (((dom
𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺) ∧ (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋) → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) | 
| 16 | 9, 14, 15 | sylancr 414 | 
. . . 4
⊢ (𝜑 → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) | 
| 17 | 8, 16 | sstrid 3194 | 
. . 3
⊢ (𝜑 → case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) | 
| 18 |   | funssxp 5427 | 
. . . 4
⊢ ((Fun
case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) ↔ (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ∧ dom case(𝐹, 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺))) | 
| 19 | 18 | simplbi 274 | 
. . 3
⊢ ((Fun
case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋) | 
| 20 | 7, 17, 19 | syl2anc 411 | 
. 2
⊢ (𝜑 → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋) | 
| 21 |   | casedm 7152 | 
. . . 4
⊢ dom
case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) | 
| 22 |   | fdm 5413 | 
. . . . . 6
⊢ (𝐹:𝐴⟶𝑋 → dom 𝐹 = 𝐴) | 
| 23 | 1, 22 | syl 14 | 
. . . . 5
⊢ (𝜑 → dom 𝐹 = 𝐴) | 
| 24 |   | fdm 5413 | 
. . . . . 6
⊢ (𝐺:𝐵⟶𝑋 → dom 𝐺 = 𝐵) | 
| 25 | 4, 24 | syl 14 | 
. . . . 5
⊢ (𝜑 → dom 𝐺 = 𝐵) | 
| 26 |   | djueq12 7105 | 
. . . . 5
⊢ ((dom
𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ⊔ dom 𝐺) = (𝐴 ⊔ 𝐵)) | 
| 27 | 23, 25, 26 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → (dom 𝐹 ⊔ dom 𝐺) = (𝐴 ⊔ 𝐵)) | 
| 28 | 21, 27 | eqtrid 2241 | 
. . 3
⊢ (𝜑 → dom case(𝐹, 𝐺) = (𝐴 ⊔ 𝐵)) | 
| 29 | 28 | feq2d 5395 | 
. 2
⊢ (𝜑 → (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ↔ case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋)) | 
| 30 | 20, 29 | mpbid 147 | 
1
⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋) |