ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef GIF version

Theorem casef 6973
Description: The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef.f (𝜑𝐹:𝐴𝑋)
casef.g (𝜑𝐺:𝐵𝑋)
Assertion
Ref Expression
casef (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)

Proof of Theorem casef
StepHypRef Expression
1 casef.f . . . . 5 (𝜑𝐹:𝐴𝑋)
2 ffun 5275 . . . . 5 (𝐹:𝐴𝑋 → Fun 𝐹)
31, 2syl 14 . . . 4 (𝜑 → Fun 𝐹)
4 casef.g . . . . 5 (𝜑𝐺:𝐵𝑋)
5 ffun 5275 . . . . 5 (𝐺:𝐵𝑋 → Fun 𝐺)
64, 5syl 14 . . . 4 (𝜑 → Fun 𝐺)
73, 6casefun 6970 . . 3 (𝜑 → Fun case(𝐹, 𝐺))
8 caserel 6972 . . . 4 case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺))
9 ssid 3117 . . . . 5 (dom 𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺)
10 frn 5281 . . . . . . 7 (𝐹:𝐴𝑋 → ran 𝐹𝑋)
111, 10syl 14 . . . . . 6 (𝜑 → ran 𝐹𝑋)
12 frn 5281 . . . . . . 7 (𝐺:𝐵𝑋 → ran 𝐺𝑋)
134, 12syl 14 . . . . . 6 (𝜑 → ran 𝐺𝑋)
1411, 13unssd 3252 . . . . 5 (𝜑 → (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋)
15 xpss12 4646 . . . . 5 (((dom 𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺) ∧ (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋) → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
169, 14, 15sylancr 410 . . . 4 (𝜑 → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
178, 16sstrid 3108 . . 3 (𝜑 → case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋))
18 funssxp 5292 . . . 4 ((Fun case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) ↔ (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ∧ dom case(𝐹, 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺)))
1918simplbi 272 . . 3 ((Fun case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋)
207, 17, 19syl2anc 408 . 2 (𝜑 → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋)
21 casedm 6971 . . . 4 dom case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
22 fdm 5278 . . . . . 6 (𝐹:𝐴𝑋 → dom 𝐹 = 𝐴)
231, 22syl 14 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
24 fdm 5278 . . . . . 6 (𝐺:𝐵𝑋 → dom 𝐺 = 𝐵)
254, 24syl 14 . . . . 5 (𝜑 → dom 𝐺 = 𝐵)
26 djueq12 6924 . . . . 5 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ⊔ dom 𝐺) = (𝐴𝐵))
2723, 25, 26syl2anc 408 . . . 4 (𝜑 → (dom 𝐹 ⊔ dom 𝐺) = (𝐴𝐵))
2821, 27syl5eq 2184 . . 3 (𝜑 → dom case(𝐹, 𝐺) = (𝐴𝐵))
2928feq2d 5260 . 2 (𝜑 → (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ↔ case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋))
3020, 29mpbid 146 1 (𝜑 → case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  cun 3069  wss 3071   × cxp 4537  dom cdm 4539  ran crn 4540  Fun wfun 5117  wf 5119  cdju 6922  casecdjucase 6968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-dju 6923  df-inl 6932  df-inr 6933  df-case 6969
This theorem is referenced by:  casef1  6975  omp1eomlem  6979  ctm  6994
  Copyright terms: Public domain W3C validator