Proof of Theorem casef
Step | Hyp | Ref
| Expression |
1 | | casef.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝑋) |
2 | | ffun 5350 |
. . . . 5
⊢ (𝐹:𝐴⟶𝑋 → Fun 𝐹) |
3 | 1, 2 | syl 14 |
. . . 4
⊢ (𝜑 → Fun 𝐹) |
4 | | casef.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝑋) |
5 | | ffun 5350 |
. . . . 5
⊢ (𝐺:𝐵⟶𝑋 → Fun 𝐺) |
6 | 4, 5 | syl 14 |
. . . 4
⊢ (𝜑 → Fun 𝐺) |
7 | 3, 6 | casefun 7062 |
. . 3
⊢ (𝜑 → Fun case(𝐹, 𝐺)) |
8 | | caserel 7064 |
. . . 4
⊢
case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) |
9 | | ssid 3167 |
. . . . 5
⊢ (dom
𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺) |
10 | | frn 5356 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝑋 → ran 𝐹 ⊆ 𝑋) |
11 | 1, 10 | syl 14 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ⊆ 𝑋) |
12 | | frn 5356 |
. . . . . . 7
⊢ (𝐺:𝐵⟶𝑋 → ran 𝐺 ⊆ 𝑋) |
13 | 4, 12 | syl 14 |
. . . . . 6
⊢ (𝜑 → ran 𝐺 ⊆ 𝑋) |
14 | 11, 13 | unssd 3303 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋) |
15 | | xpss12 4718 |
. . . . 5
⊢ (((dom
𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺) ∧ (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋) → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) |
16 | 9, 14, 15 | sylancr 412 |
. . . 4
⊢ (𝜑 → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) |
17 | 8, 16 | sstrid 3158 |
. . 3
⊢ (𝜑 → case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) |
18 | | funssxp 5367 |
. . . 4
⊢ ((Fun
case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) ↔ (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ∧ dom case(𝐹, 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺))) |
19 | 18 | simplbi 272 |
. . 3
⊢ ((Fun
case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋) |
20 | 7, 17, 19 | syl2anc 409 |
. 2
⊢ (𝜑 → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋) |
21 | | casedm 7063 |
. . . 4
⊢ dom
case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
22 | | fdm 5353 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝑋 → dom 𝐹 = 𝐴) |
23 | 1, 22 | syl 14 |
. . . . 5
⊢ (𝜑 → dom 𝐹 = 𝐴) |
24 | | fdm 5353 |
. . . . . 6
⊢ (𝐺:𝐵⟶𝑋 → dom 𝐺 = 𝐵) |
25 | 4, 24 | syl 14 |
. . . . 5
⊢ (𝜑 → dom 𝐺 = 𝐵) |
26 | | djueq12 7016 |
. . . . 5
⊢ ((dom
𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ⊔ dom 𝐺) = (𝐴 ⊔ 𝐵)) |
27 | 23, 25, 26 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (dom 𝐹 ⊔ dom 𝐺) = (𝐴 ⊔ 𝐵)) |
28 | 21, 27 | eqtrid 2215 |
. . 3
⊢ (𝜑 → dom case(𝐹, 𝐺) = (𝐴 ⊔ 𝐵)) |
29 | 28 | feq2d 5335 |
. 2
⊢ (𝜑 → (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ↔ case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋)) |
30 | 20, 29 | mpbid 146 |
1
⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋) |