Proof of Theorem casef
| Step | Hyp | Ref
| Expression |
| 1 | | casef.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝑋) |
| 2 | | ffun 5413 |
. . . . 5
⊢ (𝐹:𝐴⟶𝑋 → Fun 𝐹) |
| 3 | 1, 2 | syl 14 |
. . . 4
⊢ (𝜑 → Fun 𝐹) |
| 4 | | casef.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝑋) |
| 5 | | ffun 5413 |
. . . . 5
⊢ (𝐺:𝐵⟶𝑋 → Fun 𝐺) |
| 6 | 4, 5 | syl 14 |
. . . 4
⊢ (𝜑 → Fun 𝐺) |
| 7 | 3, 6 | casefun 7160 |
. . 3
⊢ (𝜑 → Fun case(𝐹, 𝐺)) |
| 8 | | caserel 7162 |
. . . 4
⊢
case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) |
| 9 | | ssid 3204 |
. . . . 5
⊢ (dom
𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺) |
| 10 | | frn 5419 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝑋 → ran 𝐹 ⊆ 𝑋) |
| 11 | 1, 10 | syl 14 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ⊆ 𝑋) |
| 12 | | frn 5419 |
. . . . . . 7
⊢ (𝐺:𝐵⟶𝑋 → ran 𝐺 ⊆ 𝑋) |
| 13 | 4, 12 | syl 14 |
. . . . . 6
⊢ (𝜑 → ran 𝐺 ⊆ 𝑋) |
| 14 | 11, 13 | unssd 3340 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋) |
| 15 | | xpss12 4771 |
. . . . 5
⊢ (((dom
𝐹 ⊔ dom 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺) ∧ (ran 𝐹 ∪ ran 𝐺) ⊆ 𝑋) → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) |
| 16 | 9, 14, 15 | sylancr 414 |
. . . 4
⊢ (𝜑 → ((dom 𝐹 ⊔ dom 𝐺) × (ran 𝐹 ∪ ran 𝐺)) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) |
| 17 | 8, 16 | sstrid 3195 |
. . 3
⊢ (𝜑 → case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) |
| 18 | | funssxp 5430 |
. . . 4
⊢ ((Fun
case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) ↔ (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ∧ dom case(𝐹, 𝐺) ⊆ (dom 𝐹 ⊔ dom 𝐺))) |
| 19 | 18 | simplbi 274 |
. . 3
⊢ ((Fun
case(𝐹, 𝐺) ∧ case(𝐹, 𝐺) ⊆ ((dom 𝐹 ⊔ dom 𝐺) × 𝑋)) → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋) |
| 20 | 7, 17, 19 | syl2anc 411 |
. 2
⊢ (𝜑 → case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋) |
| 21 | | casedm 7161 |
. . . 4
⊢ dom
case(𝐹, 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
| 22 | | fdm 5416 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝑋 → dom 𝐹 = 𝐴) |
| 23 | 1, 22 | syl 14 |
. . . . 5
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 24 | | fdm 5416 |
. . . . . 6
⊢ (𝐺:𝐵⟶𝑋 → dom 𝐺 = 𝐵) |
| 25 | 4, 24 | syl 14 |
. . . . 5
⊢ (𝜑 → dom 𝐺 = 𝐵) |
| 26 | | djueq12 7114 |
. . . . 5
⊢ ((dom
𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ⊔ dom 𝐺) = (𝐴 ⊔ 𝐵)) |
| 27 | 23, 25, 26 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (dom 𝐹 ⊔ dom 𝐺) = (𝐴 ⊔ 𝐵)) |
| 28 | 21, 27 | eqtrid 2241 |
. . 3
⊢ (𝜑 → dom case(𝐹, 𝐺) = (𝐴 ⊔ 𝐵)) |
| 29 | 28 | feq2d 5398 |
. 2
⊢ (𝜑 → (case(𝐹, 𝐺):dom case(𝐹, 𝐺)⟶𝑋 ↔ case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋)) |
| 30 | 20, 29 | mpbid 147 |
1
⊢ (𝜑 → case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋) |