![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpeq2 | GIF version |
Description: Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.) |
Ref | Expression |
---|---|
xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2241 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | 1 | anbi2d 464 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | opabbidv 4071 | . 2 ⊢ (𝐴 = 𝐵 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
4 | df-xp 4634 | . 2 ⊢ (𝐶 × 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
5 | df-xp 4634 | . 2 ⊢ (𝐶 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
6 | 3, 4, 5 | 3eqtr4g 2235 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {copab 4065 × cxp 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-opab 4067 df-xp 4634 |
This theorem is referenced by: xpeq12 4647 xpeq2i 4649 xpeq2d 4652 xpeq0r 5053 xpdisj2 5056 pmvalg 6661 xpcomeng 6830 djueq12 7040 txuni2 13841 txbas 13843 txopn 13850 txrest 13861 txdis 13862 txdis1cn 13863 xmettxlem 14094 xmettx 14095 |
Copyright terms: Public domain | W3C validator |