![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dffv4g | GIF version |
Description: The previous definition of function value, from before the ℩ operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 4997), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dffv4g | ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffv3g 5511 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴}))) | |
2 | df-iota 5178 | . . 3 ⊢ (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = ∪ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} | |
3 | abid2 2298 | . . . . . 6 ⊢ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴}) | |
4 | 3 | eqeq1i 2185 | . . . . 5 ⊢ ({𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥}) |
5 | 4 | abbii 2293 | . . . 4 ⊢ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
6 | 5 | unieqi 3819 | . . 3 ⊢ ∪ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
7 | 2, 6 | eqtri 2198 | . 2 ⊢ (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
8 | 1, 7 | eqtrdi 2226 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 {cab 2163 {csn 3592 ∪ cuni 3809 “ cima 4629 ℩cio 5176 ‘cfv 5216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-xp 4632 df-cnv 4634 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fv 5224 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |