ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffv4g GIF version

Theorem dffv4g 5623
Description: The previous definition of function value, from before the operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 5096), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dffv4g (𝐴𝑉 → (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑉

Proof of Theorem dffv4g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffv3g 5622 . 2 (𝐴𝑉 → (𝐹𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})))
2 df-iota 5277 . . 3 (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}}
3 abid2 2350 . . . . . 6 {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴})
43eqeq1i 2237 . . . . 5 ({𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥})
54abbii 2345 . . . 4 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
65unieqi 3897 . . 3 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
72, 6eqtri 2250 . 2 (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
81, 7eqtrdi 2278 1 (𝐴𝑉 → (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {cab 2215  {csn 3666   cuni 3887  cima 4721  cio 5275  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator