ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffv4g GIF version

Theorem dffv4g 5512
Description: The previous definition of function value, from before the operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 4997), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dffv4g (𝐴𝑉 → (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑉

Proof of Theorem dffv4g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffv3g 5511 . 2 (𝐴𝑉 → (𝐹𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})))
2 df-iota 5178 . . 3 (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}}
3 abid2 2298 . . . . . 6 {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴})
43eqeq1i 2185 . . . . 5 ({𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥})
54abbii 2293 . . . 4 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
65unieqi 3819 . . 3 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
72, 6eqtri 2198 . 2 (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
81, 7eqtrdi 2226 1 (𝐴𝑉 → (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  {cab 2163  {csn 3592   cuni 3809  cima 4629  cio 5176  cfv 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-xp 4632  df-cnv 4634  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fv 5224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator