| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffv4g | GIF version | ||
| Description: The previous definition of function value, from before the ℩ operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 5060), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dffv4g | ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffv3g 5585 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴}))) | |
| 2 | df-iota 5241 | . . 3 ⊢ (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = ∪ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} | |
| 3 | abid2 2327 | . . . . . 6 ⊢ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴}) | |
| 4 | 3 | eqeq1i 2214 | . . . . 5 ⊢ ({𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥}) |
| 5 | 4 | abbii 2322 | . . . 4 ⊢ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
| 6 | 5 | unieqi 3866 | . . 3 ⊢ ∪ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
| 7 | 2, 6 | eqtri 2227 | . 2 ⊢ (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
| 8 | 1, 7 | eqtrdi 2255 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {cab 2192 {csn 3638 ∪ cuni 3856 “ cima 4686 ℩cio 5239 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fv 5288 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |