![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dffv4g | GIF version |
Description: The previous definition of function value, from before the ℩ operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 5009), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
dffv4g | ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffv3g 5523 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴}))) | |
2 | df-iota 5190 | . . 3 ⊢ (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = ∪ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} | |
3 | abid2 2308 | . . . . . 6 ⊢ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴}) | |
4 | 3 | eqeq1i 2195 | . . . . 5 ⊢ ({𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥}) |
5 | 4 | abbii 2303 | . . . 4 ⊢ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
6 | 5 | unieqi 3831 | . . 3 ⊢ ∪ {𝑥 ∣ {𝑦 ∣ 𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
7 | 2, 6 | eqtri 2208 | . 2 ⊢ (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} |
8 | 1, 7 | eqtrdi 2236 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 {cab 2173 {csn 3604 ∪ cuni 3821 “ cima 4641 ℩cio 5188 ‘cfv 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-xp 4644 df-cnv 4646 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fv 5236 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |