ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blin2 GIF version

Theorem blin2 13935
Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝐢   π‘₯,𝐷   π‘₯,𝑃   π‘₯,𝑋

Proof of Theorem blin2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
2 simprl 529 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ 𝐡 ∈ ran (ballβ€˜π·))
3 simplr 528 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ 𝑃 ∈ (𝐡 ∩ 𝐢))
43elin1d 3325 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ 𝑃 ∈ 𝐡)
5 blss 13931 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ ran (ballβ€˜π·) ∧ 𝑃 ∈ 𝐡) β†’ βˆƒπ‘¦ ∈ ℝ+ (𝑃(ballβ€˜π·)𝑦) βŠ† 𝐡)
61, 2, 4, 5syl3anc 1238 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ βˆƒπ‘¦ ∈ ℝ+ (𝑃(ballβ€˜π·)𝑦) βŠ† 𝐡)
7 simprr 531 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ 𝐢 ∈ ran (ballβ€˜π·))
83elin2d 3326 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ 𝑃 ∈ 𝐢)
9 blss 13931 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐢 ∈ ran (ballβ€˜π·) ∧ 𝑃 ∈ 𝐢) β†’ βˆƒπ‘§ ∈ ℝ+ (𝑃(ballβ€˜π·)𝑧) βŠ† 𝐢)
101, 7, 8, 9syl3anc 1238 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ βˆƒπ‘§ ∈ ℝ+ (𝑃(ballβ€˜π·)𝑧) βŠ† 𝐢)
11 reeanv 2647 . . 3 (βˆƒπ‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ ((𝑃(ballβ€˜π·)𝑦) βŠ† 𝐡 ∧ (𝑃(ballβ€˜π·)𝑧) βŠ† 𝐢) ↔ (βˆƒπ‘¦ ∈ ℝ+ (𝑃(ballβ€˜π·)𝑦) βŠ† 𝐡 ∧ βˆƒπ‘§ ∈ ℝ+ (𝑃(ballβ€˜π·)𝑧) βŠ† 𝐢))
12 ss2in 3364 . . . . 5 (((𝑃(ballβ€˜π·)𝑦) βŠ† 𝐡 ∧ (𝑃(ballβ€˜π·)𝑧) βŠ† 𝐢) β†’ ((𝑃(ballβ€˜π·)𝑦) ∩ (𝑃(ballβ€˜π·)𝑧)) βŠ† (𝐡 ∩ 𝐢))
13 inss1 3356 . . . . . . . . . . 11 (𝐡 ∩ 𝐢) βŠ† 𝐡
14 blf 13913 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (ballβ€˜π·):(𝑋 Γ— ℝ*)βŸΆπ’« 𝑋)
15 frn 5375 . . . . . . . . . . . . . 14 ((ballβ€˜π·):(𝑋 Γ— ℝ*)βŸΆπ’« 𝑋 β†’ ran (ballβ€˜π·) βŠ† 𝒫 𝑋)
161, 14, 153syl 17 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ ran (ballβ€˜π·) βŠ† 𝒫 𝑋)
1716, 2sseldd 3157 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ 𝐡 ∈ 𝒫 𝑋)
1817elpwid 3587 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ 𝐡 βŠ† 𝑋)
1913, 18sstrid 3167 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ (𝐡 ∩ 𝐢) βŠ† 𝑋)
2019, 3sseldd 3157 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ 𝑃 ∈ 𝑋)
211, 20jca 306 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ (𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋))
22 rpxr 9661 . . . . . . . . 9 (𝑦 ∈ ℝ+ β†’ 𝑦 ∈ ℝ*)
23 rpxr 9661 . . . . . . . . 9 (𝑧 ∈ ℝ+ β†’ 𝑧 ∈ ℝ*)
2422, 23anim12i 338 . . . . . . . 8 ((𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+) β†’ (𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*))
25 blininf 13927 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ (𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)) β†’ ((𝑃(ballβ€˜π·)𝑦) ∩ (𝑃(ballβ€˜π·)𝑧)) = (𝑃(ballβ€˜π·)inf({𝑦, 𝑧}, ℝ*, < )))
2621, 24, 25syl2an 289 . . . . . . 7 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝑃(ballβ€˜π·)𝑦) ∩ (𝑃(ballβ€˜π·)𝑧)) = (𝑃(ballβ€˜π·)inf({𝑦, 𝑧}, ℝ*, < )))
2726sseq1d 3185 . . . . . 6 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (((𝑃(ballβ€˜π·)𝑦) ∩ (𝑃(ballβ€˜π·)𝑧)) βŠ† (𝐡 ∩ 𝐢) ↔ (𝑃(ballβ€˜π·)inf({𝑦, 𝑧}, ℝ*, < )) βŠ† (𝐡 ∩ 𝐢)))
28 xrminrpcl 11282 . . . . . . . 8 ((𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+) β†’ inf({𝑦, 𝑧}, ℝ*, < ) ∈ ℝ+)
29 oveq2 5883 . . . . . . . . . . 11 (π‘₯ = inf({𝑦, 𝑧}, ℝ*, < ) β†’ (𝑃(ballβ€˜π·)π‘₯) = (𝑃(ballβ€˜π·)inf({𝑦, 𝑧}, ℝ*, < )))
3029sseq1d 3185 . . . . . . . . . 10 (π‘₯ = inf({𝑦, 𝑧}, ℝ*, < ) β†’ ((𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢) ↔ (𝑃(ballβ€˜π·)inf({𝑦, 𝑧}, ℝ*, < )) βŠ† (𝐡 ∩ 𝐢)))
3130rspcev 2842 . . . . . . . . 9 ((inf({𝑦, 𝑧}, ℝ*, < ) ∈ ℝ+ ∧ (𝑃(ballβ€˜π·)inf({𝑦, 𝑧}, ℝ*, < )) βŠ† (𝐡 ∩ 𝐢)) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢))
3231ex 115 . . . . . . . 8 (inf({𝑦, 𝑧}, ℝ*, < ) ∈ ℝ+ β†’ ((𝑃(ballβ€˜π·)inf({𝑦, 𝑧}, ℝ*, < )) βŠ† (𝐡 ∩ 𝐢) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢)))
3328, 32syl 14 . . . . . . 7 ((𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+) β†’ ((𝑃(ballβ€˜π·)inf({𝑦, 𝑧}, ℝ*, < )) βŠ† (𝐡 ∩ 𝐢) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢)))
3433adantl 277 . . . . . 6 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝑃(ballβ€˜π·)inf({𝑦, 𝑧}, ℝ*, < )) βŠ† (𝐡 ∩ 𝐢) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢)))
3527, 34sylbid 150 . . . . 5 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (((𝑃(ballβ€˜π·)𝑦) ∩ (𝑃(ballβ€˜π·)𝑧)) βŠ† (𝐡 ∩ 𝐢) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢)))
3612, 35syl5 32 . . . 4 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (((𝑃(ballβ€˜π·)𝑦) βŠ† 𝐡 ∧ (𝑃(ballβ€˜π·)𝑧) βŠ† 𝐢) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢)))
3736rexlimdvva 2602 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ (βˆƒπ‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ ((𝑃(ballβ€˜π·)𝑦) βŠ† 𝐡 ∧ (𝑃(ballβ€˜π·)𝑧) βŠ† 𝐢) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢)))
3811, 37biimtrrid 153 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ ((βˆƒπ‘¦ ∈ ℝ+ (𝑃(ballβ€˜π·)𝑦) βŠ† 𝐡 ∧ βˆƒπ‘§ ∈ ℝ+ (𝑃(ballβ€˜π·)𝑧) βŠ† 𝐢) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢)))
396, 10, 38mp2and 433 1 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ (𝐡 ∩ 𝐢)) ∧ (𝐡 ∈ ran (ballβ€˜π·) ∧ 𝐢 ∈ ran (ballβ€˜π·))) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝐡 ∩ 𝐢))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  βˆƒwrex 2456   ∩ cin 3129   βŠ† wss 3130  π’« cpw 3576  {cpr 3594   Γ— cxp 4625  ran crn 4628  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875  infcinf 6982  β„*cxr 7991   < clt 7992  β„+crp 9653  βˆžMetcxmet 13443  ballcbl 13445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-map 6650  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-psmet 13450  df-xmet 13451  df-bl 13453
This theorem is referenced by:  blbas  13936
  Copyright terms: Public domain W3C validator