ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiuni GIF version

Theorem fiuni 7080
Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiuni (𝐴𝑉 𝐴 = (fi‘𝐴))

Proof of Theorem fiuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfii 7076 . . 3 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
21unissd 3874 . 2 (𝐴𝑉 𝐴 (fi‘𝐴))
3 eluni 3853 . . . . 5 (𝑥 (fi‘𝐴) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
43biimpi 120 . . . 4 (𝑥 (fi‘𝐴) → ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
54adantl 277 . . 3 ((𝐴𝑉𝑥 (fi‘𝐴)) → ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
6 simprr 531 . . . . 5 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → 𝑦 ∈ (fi‘𝐴))
7 elfi2 7074 . . . . . 6 (𝐴𝑉 → (𝑦 ∈ (fi‘𝐴) ↔ ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧))
87ad2antrr 488 . . . . 5 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → (𝑦 ∈ (fi‘𝐴) ↔ ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧))
96, 8mpbid 147 . . . 4 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧)
10 simprr 531 . . . . . 6 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑦 = 𝑧)
11 eldifi 3295 . . . . . . . . . 10 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ (𝒫 𝐴 ∩ Fin))
1211elin1d 3362 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ 𝒫 𝐴)
1312elpwid 3627 . . . . . . . 8 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧𝐴)
1413ad2antrl 490 . . . . . . 7 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑧𝐴)
15 eldifsni 3762 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ≠ ∅)
1611elin2d 3363 . . . . . . . . . 10 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ Fin)
17 fin0 6982 . . . . . . . . . 10 (𝑧 ∈ Fin → (𝑧 ≠ ∅ ↔ ∃𝑤 𝑤𝑧))
1816, 17syl 14 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → (𝑧 ≠ ∅ ↔ ∃𝑤 𝑤𝑧))
1915, 18mpbid 147 . . . . . . . 8 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∃𝑤 𝑤𝑧)
2019ad2antrl 490 . . . . . . 7 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → ∃𝑤 𝑤𝑧)
21 intssuni2m 3909 . . . . . . 7 ((𝑧𝐴 ∧ ∃𝑤 𝑤𝑧) → 𝑧 𝐴)
2214, 20, 21syl2anc 411 . . . . . 6 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑧 𝐴)
2310, 22eqsstrd 3229 . . . . 5 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑦 𝐴)
24 simplrl 535 . . . . 5 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑥𝑦)
2523, 24sseldd 3194 . . . 4 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑥 𝐴)
269, 25rexlimddv 2628 . . 3 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → 𝑥 𝐴)
275, 26exlimddv 1922 . 2 ((𝐴𝑉𝑥 (fi‘𝐴)) → 𝑥 𝐴)
282, 27eqelssd 3212 1 (𝐴𝑉 𝐴 = (fi‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1515  wcel 2176  wne 2376  wrex 2485  cdif 3163  cin 3165  wss 3166  c0 3460  𝒫 cpw 3616  {csn 3633   cuni 3850   cint 3885  cfv 5271  Fincfn 6827  ficfi 7070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6502  df-er 6620  df-en 6828  df-fin 6830  df-fi 7071
This theorem is referenced by:  fipwssg  7081
  Copyright terms: Public domain W3C validator