| Step | Hyp | Ref
| Expression |
| 1 | | ssfii 7040 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
| 2 | 1 | unissd 3863 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ⊆ ∪ (fi‘𝐴)) |
| 3 | | eluni 3842 |
. . . . 5
⊢ (𝑥 ∈ ∪ (fi‘𝐴) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) |
| 4 | 3 | biimpi 120 |
. . . 4
⊢ (𝑥 ∈ ∪ (fi‘𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) |
| 5 | 4 | adantl 277 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) →
∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) |
| 6 | | simprr 531 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) → 𝑦 ∈ (fi‘𝐴)) |
| 7 | | elfi2 7038 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ (fi‘𝐴) ↔ ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = ∩
𝑧)) |
| 8 | 7 | ad2antrr 488 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) → (𝑦 ∈ (fi‘𝐴) ↔ ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = ∩
𝑧)) |
| 9 | 6, 8 | mpbid 147 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) → ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = ∩
𝑧) |
| 10 | | simprr 531 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = ∩
𝑧)) → 𝑦 = ∩
𝑧) |
| 11 | | eldifi 3285 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})
→ 𝑧 ∈ (𝒫
𝐴 ∩
Fin)) |
| 12 | 11 | elin1d 3352 |
. . . . . . . . 9
⊢ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})
→ 𝑧 ∈ 𝒫
𝐴) |
| 13 | 12 | elpwid 3616 |
. . . . . . . 8
⊢ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})
→ 𝑧 ⊆ 𝐴) |
| 14 | 13 | ad2antrl 490 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = ∩
𝑧)) → 𝑧 ⊆ 𝐴) |
| 15 | | eldifsni 3751 |
. . . . . . . . 9
⊢ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})
→ 𝑧 ≠
∅) |
| 16 | 11 | elin2d 3353 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})
→ 𝑧 ∈
Fin) |
| 17 | | fin0 6946 |
. . . . . . . . . 10
⊢ (𝑧 ∈ Fin → (𝑧 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝑧)) |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
⊢ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})
→ (𝑧 ≠ ∅
↔ ∃𝑤 𝑤 ∈ 𝑧)) |
| 19 | 15, 18 | mpbid 147 |
. . . . . . . 8
⊢ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})
→ ∃𝑤 𝑤 ∈ 𝑧) |
| 20 | 19 | ad2antrl 490 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = ∩
𝑧)) → ∃𝑤 𝑤 ∈ 𝑧) |
| 21 | | intssuni2m 3898 |
. . . . . . 7
⊢ ((𝑧 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑧) → ∩ 𝑧 ⊆ ∪ 𝐴) |
| 22 | 14, 20, 21 | syl2anc 411 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = ∩
𝑧)) → ∩ 𝑧
⊆ ∪ 𝐴) |
| 23 | 10, 22 | eqsstrd 3219 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = ∩
𝑧)) → 𝑦 ⊆ ∪ 𝐴) |
| 24 | | simplrl 535 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = ∩
𝑧)) → 𝑥 ∈ 𝑦) |
| 25 | 23, 24 | sseldd 3184 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = ∩
𝑧)) → 𝑥 ∈ ∪ 𝐴) |
| 26 | 9, 25 | rexlimddv 2619 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (fi‘𝐴))) → 𝑥 ∈ ∪ 𝐴) |
| 27 | 5, 26 | exlimddv 1913 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ∪
(fi‘𝐴)) → 𝑥 ∈ ∪ 𝐴) |
| 28 | 2, 27 | eqelssd 3202 |
1
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪
(fi‘𝐴)) |