ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiuni GIF version

Theorem fiuni 6943
Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiuni (𝐴𝑉 𝐴 = (fi‘𝐴))

Proof of Theorem fiuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfii 6939 . . 3 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
21unissd 3813 . 2 (𝐴𝑉 𝐴 (fi‘𝐴))
3 eluni 3792 . . . . 5 (𝑥 (fi‘𝐴) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
43biimpi 119 . . . 4 (𝑥 (fi‘𝐴) → ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
54adantl 275 . . 3 ((𝐴𝑉𝑥 (fi‘𝐴)) → ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
6 simprr 522 . . . . 5 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → 𝑦 ∈ (fi‘𝐴))
7 elfi2 6937 . . . . . 6 (𝐴𝑉 → (𝑦 ∈ (fi‘𝐴) ↔ ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧))
87ad2antrr 480 . . . . 5 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → (𝑦 ∈ (fi‘𝐴) ↔ ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧))
96, 8mpbid 146 . . . 4 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧)
10 simprr 522 . . . . . 6 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑦 = 𝑧)
11 eldifi 3244 . . . . . . . . . 10 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ (𝒫 𝐴 ∩ Fin))
1211elin1d 3311 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ 𝒫 𝐴)
1312elpwid 3570 . . . . . . . 8 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧𝐴)
1413ad2antrl 482 . . . . . . 7 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑧𝐴)
15 eldifsni 3705 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ≠ ∅)
1611elin2d 3312 . . . . . . . . . 10 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ Fin)
17 fin0 6851 . . . . . . . . . 10 (𝑧 ∈ Fin → (𝑧 ≠ ∅ ↔ ∃𝑤 𝑤𝑧))
1816, 17syl 14 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → (𝑧 ≠ ∅ ↔ ∃𝑤 𝑤𝑧))
1915, 18mpbid 146 . . . . . . . 8 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∃𝑤 𝑤𝑧)
2019ad2antrl 482 . . . . . . 7 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → ∃𝑤 𝑤𝑧)
21 intssuni2m 3848 . . . . . . 7 ((𝑧𝐴 ∧ ∃𝑤 𝑤𝑧) → 𝑧 𝐴)
2214, 20, 21syl2anc 409 . . . . . 6 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑧 𝐴)
2310, 22eqsstrd 3178 . . . . 5 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑦 𝐴)
24 simplrl 525 . . . . 5 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑥𝑦)
2523, 24sseldd 3143 . . . 4 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑥 𝐴)
269, 25rexlimddv 2588 . . 3 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → 𝑥 𝐴)
275, 26exlimddv 1886 . 2 ((𝐴𝑉𝑥 (fi‘𝐴)) → 𝑥 𝐴)
282, 27eqelssd 3161 1 (𝐴𝑉 𝐴 = (fi‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wne 2336  wrex 2445  cdif 3113  cin 3115  wss 3116  c0 3409  𝒫 cpw 3559  {csn 3576   cuni 3789   cint 3824  cfv 5188  Fincfn 6706  ficfi 6933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709  df-fi 6934
This theorem is referenced by:  fipwssg  6944
  Copyright terms: Public domain W3C validator