ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiuni GIF version

Theorem fiuni 7106
Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiuni (𝐴𝑉 𝐴 = (fi‘𝐴))

Proof of Theorem fiuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfii 7102 . . 3 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
21unissd 3888 . 2 (𝐴𝑉 𝐴 (fi‘𝐴))
3 eluni 3867 . . . . 5 (𝑥 (fi‘𝐴) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
43biimpi 120 . . . 4 (𝑥 (fi‘𝐴) → ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
54adantl 277 . . 3 ((𝐴𝑉𝑥 (fi‘𝐴)) → ∃𝑦(𝑥𝑦𝑦 ∈ (fi‘𝐴)))
6 simprr 531 . . . . 5 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → 𝑦 ∈ (fi‘𝐴))
7 elfi2 7100 . . . . . 6 (𝐴𝑉 → (𝑦 ∈ (fi‘𝐴) ↔ ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧))
87ad2antrr 488 . . . . 5 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → (𝑦 ∈ (fi‘𝐴) ↔ ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧))
96, 8mpbid 147 . . . 4 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → ∃𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑦 = 𝑧)
10 simprr 531 . . . . . 6 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑦 = 𝑧)
11 eldifi 3303 . . . . . . . . . 10 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ (𝒫 𝐴 ∩ Fin))
1211elin1d 3370 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ 𝒫 𝐴)
1312elpwid 3637 . . . . . . . 8 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧𝐴)
1413ad2antrl 490 . . . . . . 7 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑧𝐴)
15 eldifsni 3773 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ≠ ∅)
1611elin2d 3371 . . . . . . . . . 10 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑧 ∈ Fin)
17 fin0 7008 . . . . . . . . . 10 (𝑧 ∈ Fin → (𝑧 ≠ ∅ ↔ ∃𝑤 𝑤𝑧))
1816, 17syl 14 . . . . . . . . 9 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → (𝑧 ≠ ∅ ↔ ∃𝑤 𝑤𝑧))
1915, 18mpbid 147 . . . . . . . 8 (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∃𝑤 𝑤𝑧)
2019ad2antrl 490 . . . . . . 7 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → ∃𝑤 𝑤𝑧)
21 intssuni2m 3923 . . . . . . 7 ((𝑧𝐴 ∧ ∃𝑤 𝑤𝑧) → 𝑧 𝐴)
2214, 20, 21syl2anc 411 . . . . . 6 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑧 𝐴)
2310, 22eqsstrd 3237 . . . . 5 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑦 𝐴)
24 simplrl 535 . . . . 5 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑥𝑦)
2523, 24sseldd 3202 . . . 4 ((((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) ∧ (𝑧 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ 𝑦 = 𝑧)) → 𝑥 𝐴)
269, 25rexlimddv 2630 . . 3 (((𝐴𝑉𝑥 (fi‘𝐴)) ∧ (𝑥𝑦𝑦 ∈ (fi‘𝐴))) → 𝑥 𝐴)
275, 26exlimddv 1923 . 2 ((𝐴𝑉𝑥 (fi‘𝐴)) → 𝑥 𝐴)
282, 27eqelssd 3220 1 (𝐴𝑉 𝐴 = (fi‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2178  wne 2378  wrex 2487  cdif 3171  cin 3173  wss 3174  c0 3468  𝒫 cpw 3626  {csn 3643   cuni 3864   cint 3899  cfv 5290  Fincfn 6850  ficfi 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853  df-fi 7097
This theorem is referenced by:  fipwssg  7107
  Copyright terms: Public domain W3C validator