ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  explecnv GIF version

Theorem explecnv 11849
Description: A sequence of terms converges to zero when it is less than powers of a number 𝐴 whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
explecnv.1 𝑍 = (ℤ𝑀)
explecnv.2 (𝜑𝐹𝑉)
explecnv.3 (𝜑𝑀 ∈ ℤ)
explecnv.5 (𝜑𝐴 ∈ ℝ)
explecnv.4 (𝜑 → (abs‘𝐴) < 1)
explecnv.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
explecnv.7 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
Assertion
Ref Expression
explecnv (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝐹   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem explecnv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . 3 (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))
2 0z 9385 . . . 4 0 ∈ ℤ
3 explecnv.3 . . . 4 (𝜑𝑀 ∈ ℤ)
4 0zd 9386 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 0 ∈ ℤ)
5 simpr 110 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
6 zdcle 9451 . . . . . 6 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 ≤ 0)
76ancoms 268 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑀 ≤ 0)
84, 5, 7ifcldcd 3608 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ)
92, 3, 8sylancr 414 . . 3 (𝜑 → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ)
10 explecnv.5 . . . . 5 (𝜑𝐴 ∈ ℝ)
1110recnd 8103 . . . 4 (𝜑𝐴 ∈ ℂ)
12 explecnv.4 . . . 4 (𝜑 → (abs‘𝐴) < 1)
1311, 12expcnv 11848 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
14 zex 9383 . . . . . 6 ℤ ∈ V
15 explecnv.1 . . . . . . 7 𝑍 = (ℤ𝑀)
16 uzssz 9670 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
1715, 16eqsstri 3225 . . . . . 6 𝑍 ⊆ ℤ
1814, 17ssexi 4183 . . . . 5 𝑍 ∈ V
1918mptex 5812 . . . 4 (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ∈ V
2019a1i 9 . . 3 (𝜑 → (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ∈ V)
21 nn0uz 9685 . . . . . . . . . 10 0 = (ℤ‘0)
2215, 21ineq12i 3372 . . . . . . . . 9 (𝑍 ∩ ℕ0) = ((ℤ𝑀) ∩ (ℤ‘0))
23 uzin 9683 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ‘0)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)))
243, 2, 23sylancl 413 . . . . . . . . 9 (𝜑 → ((ℤ𝑀) ∩ (ℤ‘0)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)))
2522, 24eqtr2id 2251 . . . . . . . 8 (𝜑 → (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) = (𝑍 ∩ ℕ0))
2625eleq2d 2275 . . . . . . 7 (𝜑 → (𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) ↔ 𝑘 ∈ (𝑍 ∩ ℕ0)))
2726biimpa 296 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ (𝑍 ∩ ℕ0))
2827elin2d 3363 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ ℕ0)
2911adantr 276 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℂ)
3029, 28expcld 10820 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴𝑘) ∈ ℂ)
31 oveq2 5954 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
32 eqid 2205 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
3331, 32fvmptg 5657 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3428, 30, 33syl2anc 411 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3510adantr 276 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℝ)
3635, 28reexpcld 10837 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴𝑘) ∈ ℝ)
3734, 36eqeltrd 2282 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℝ)
3827elin1d 3362 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘𝑍)
39 explecnv.6 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4038, 39syldan 282 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐹𝑘) ∈ ℂ)
4140abscld 11525 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹𝑘)) ∈ ℝ)
42 2fveq3 5583 . . . . . 6 (𝑛 = 𝑘 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑘)))
43 eqid 2205 . . . . . 6 (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) = (𝑛𝑍 ↦ (abs‘(𝐹𝑛)))
4442, 43fvmptg 5657 . . . . 5 ((𝑘𝑍 ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
4538, 41, 44syl2anc 411 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
4645, 41eqeltrd 2282 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) ∈ ℝ)
47 explecnv.7 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
4838, 47syldan 282 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
4948, 45, 343brtr4d 4077 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘))
5040absge0d 11528 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ (abs‘(𝐹𝑘)))
5150, 45breqtrrd 4073 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘))
521, 9, 13, 20, 37, 46, 49, 51climsqz2 11680 . 2 (𝜑 → (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ⇝ 0)
53 explecnv.2 . . 3 (𝜑𝐹𝑉)
54 simpr 110 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
5539abscld 11525 . . . 4 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
5654, 55, 44syl2anc 411 . . 3 ((𝜑𝑘𝑍) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
5715, 3, 53, 20, 39, 56climabs0 11651 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ⇝ 0))
5852, 57mpbird 167 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2176  Vcvv 2772  cin 3165  ifcif 3571   class class class wbr 4045  cmpt 4106  cfv 5272  (class class class)co 5946  cc 7925  cr 7926  0cc0 7927  1c1 7928   < clt 8109  cle 8110  0cn0 9297  cz 9374  cuz 9650  cexp 10685  abscabs 11341  cli 11622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator