ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  explecnv GIF version

Theorem explecnv 10960
Description: A sequence of terms converges to zero when it is less than powers of a number 𝐴 whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
explecnv.1 𝑍 = (ℤ𝑀)
explecnv.2 (𝜑𝐹𝑉)
explecnv.3 (𝜑𝑀 ∈ ℤ)
explecnv.5 (𝜑𝐴 ∈ ℝ)
explecnv.4 (𝜑 → (abs‘𝐴) < 1)
explecnv.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
explecnv.7 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
Assertion
Ref Expression
explecnv (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝐹   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem explecnv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2089 . . 3 (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))
2 0z 8822 . . . 4 0 ∈ ℤ
3 explecnv.3 . . . 4 (𝜑𝑀 ∈ ℤ)
4 0zd 8823 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 0 ∈ ℤ)
5 simpr 109 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
6 zdcle 8884 . . . . . 6 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 ≤ 0)
76ancoms 265 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑀 ≤ 0)
84, 5, 7ifcldcd 3430 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ)
92, 3, 8sylancr 406 . . 3 (𝜑 → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ)
10 explecnv.5 . . . . 5 (𝜑𝐴 ∈ ℝ)
1110recnd 7577 . . . 4 (𝜑𝐴 ∈ ℂ)
12 explecnv.4 . . . 4 (𝜑 → (abs‘𝐴) < 1)
1311, 12expcnv 10959 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
14 zex 8820 . . . . . 6 ℤ ∈ V
15 explecnv.1 . . . . . . 7 𝑍 = (ℤ𝑀)
16 uzssz 9099 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
1715, 16eqsstri 3057 . . . . . 6 𝑍 ⊆ ℤ
1814, 17ssexi 3983 . . . . 5 𝑍 ∈ V
1918mptex 5537 . . . 4 (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ∈ V
2019a1i 9 . . 3 (𝜑 → (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ∈ V)
21 nn0uz 9114 . . . . . . . . . 10 0 = (ℤ‘0)
2215, 21ineq12i 3200 . . . . . . . . 9 (𝑍 ∩ ℕ0) = ((ℤ𝑀) ∩ (ℤ‘0))
23 uzin 9112 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ‘0)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)))
243, 2, 23sylancl 405 . . . . . . . . 9 (𝜑 → ((ℤ𝑀) ∩ (ℤ‘0)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)))
2522, 24syl5req 2134 . . . . . . . 8 (𝜑 → (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) = (𝑍 ∩ ℕ0))
2625eleq2d 2158 . . . . . . 7 (𝜑 → (𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) ↔ 𝑘 ∈ (𝑍 ∩ ℕ0)))
2726biimpa 291 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ (𝑍 ∩ ℕ0))
2827elin2d 3191 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ ℕ0)
2911adantr 271 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℂ)
3029, 28expcld 10147 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴𝑘) ∈ ℂ)
31 oveq2 5674 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
32 eqid 2089 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
3331, 32fvmptg 5393 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3428, 30, 33syl2anc 404 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3510adantr 271 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℝ)
3635, 28reexpcld 10164 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴𝑘) ∈ ℝ)
3734, 36eqeltrd 2165 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℝ)
3827elin1d 3190 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘𝑍)
39 explecnv.6 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4038, 39syldan 277 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐹𝑘) ∈ ℂ)
4140abscld 10675 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹𝑘)) ∈ ℝ)
42 2fveq3 5323 . . . . . 6 (𝑛 = 𝑘 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑘)))
43 eqid 2089 . . . . . 6 (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) = (𝑛𝑍 ↦ (abs‘(𝐹𝑛)))
4442, 43fvmptg 5393 . . . . 5 ((𝑘𝑍 ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
4538, 41, 44syl2anc 404 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
4645, 41eqeltrd 2165 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) ∈ ℝ)
47 explecnv.7 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
4838, 47syldan 277 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
4948, 45, 343brtr4d 3881 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘))
5040absge0d 10678 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ (abs‘(𝐹𝑘)))
5150, 45breqtrrd 3877 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘))
521, 9, 13, 20, 37, 46, 49, 51climsqz2 10785 . 2 (𝜑 → (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ⇝ 0)
53 explecnv.2 . . 3 (𝜑𝐹𝑉)
54 simpr 109 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
5539abscld 10675 . . . 4 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
5654, 55, 44syl2anc 404 . . 3 ((𝜑𝑘𝑍) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
5715, 3, 53, 20, 39, 56climabs0 10757 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ⇝ 0))
5852, 57mpbird 166 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 781   = wceq 1290  wcel 1439  Vcvv 2620  cin 2999  ifcif 3397   class class class wbr 3851  cmpt 3905  cfv 5028  (class class class)co 5666  cc 7409  cr 7410  0cc0 7411  1c1 7412   < clt 7583  cle 7584  0cn0 8734  cz 8811  cuz 9080  cexp 10015  abscabs 10491  cli 10727
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-iseq 9914  df-seq3 9915  df-exp 10016  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator