Step | Hyp | Ref
| Expression |
1 | | eqid 2165 |
. . 3
⊢
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀)) = (ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀)) |
2 | | 0z 9198 |
. . . 4
⊢ 0 ∈
ℤ |
3 | | explecnv.3 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | | 0zd 9199 |
. . . . 5
⊢ ((0
∈ ℤ ∧ 𝑀
∈ ℤ) → 0 ∈ ℤ) |
5 | | simpr 109 |
. . . . 5
⊢ ((0
∈ ℤ ∧ 𝑀
∈ ℤ) → 𝑀
∈ ℤ) |
6 | | zdcle 9263 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑀 ≤ 0) |
7 | 6 | ancoms 266 |
. . . . 5
⊢ ((0
∈ ℤ ∧ 𝑀
∈ ℤ) → DECID 𝑀 ≤ 0) |
8 | 4, 5, 7 | ifcldcd 3554 |
. . . 4
⊢ ((0
∈ ℤ ∧ 𝑀
∈ ℤ) → if(𝑀
≤ 0, 0, 𝑀) ∈
ℤ) |
9 | 2, 3, 8 | sylancr 411 |
. . 3
⊢ (𝜑 → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ) |
10 | | explecnv.5 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
11 | 10 | recnd 7923 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℂ) |
12 | | explecnv.4 |
. . . 4
⊢ (𝜑 → (abs‘𝐴) < 1) |
13 | 11, 12 | expcnv 11441 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
14 | | zex 9196 |
. . . . . 6
⊢ ℤ
∈ V |
15 | | explecnv.1 |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
16 | | uzssz 9481 |
. . . . . . 7
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
17 | 15, 16 | eqsstri 3173 |
. . . . . 6
⊢ 𝑍 ⊆
ℤ |
18 | 14, 17 | ssexi 4119 |
. . . . 5
⊢ 𝑍 ∈ V |
19 | 18 | mptex 5710 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) ∈ V |
20 | 19 | a1i 9 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) ∈ V) |
21 | | nn0uz 9496 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
22 | 15, 21 | ineq12i 3320 |
. . . . . . . . 9
⊢ (𝑍 ∩ ℕ0) =
((ℤ≥‘𝑀) ∩
(ℤ≥‘0)) |
23 | | uzin 9494 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 0 ∈
ℤ) → ((ℤ≥‘𝑀) ∩ (ℤ≥‘0)) =
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) |
24 | 3, 2, 23 | sylancl 410 |
. . . . . . . . 9
⊢ (𝜑 →
((ℤ≥‘𝑀) ∩ (ℤ≥‘0)) =
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) |
25 | 22, 24 | eqtr2id 2211 |
. . . . . . . 8
⊢ (𝜑 →
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀)) = (𝑍 ∩
ℕ0)) |
26 | 25 | eleq2d 2235 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀)) ↔ 𝑘 ∈ (𝑍 ∩
ℕ0))) |
27 | 26 | biimpa 294 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ (𝑍 ∩
ℕ0)) |
28 | 27 | elin2d 3311 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ ℕ0) |
29 | 11 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℂ) |
30 | 29, 28 | expcld 10584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴↑𝑘) ∈ ℂ) |
31 | | oveq2 5849 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) |
32 | | eqid 2165 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) |
33 | 31, 32 | fvmptg 5561 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝐴↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
34 | 28, 30, 33 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
35 | 10 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℝ) |
36 | 35, 28 | reexpcld 10601 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴↑𝑘) ∈ ℝ) |
37 | 34, 36 | eqeltrd 2242 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) ∈ ℝ) |
38 | 27 | elin1d 3310 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ 𝑍) |
39 | | explecnv.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
40 | 38, 39 | syldan 280 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐹‘𝑘) ∈ ℂ) |
41 | 40 | abscld 11119 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
42 | | 2fveq3 5490 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (abs‘(𝐹‘𝑛)) = (abs‘(𝐹‘𝑘))) |
43 | | eqid 2165 |
. . . . . 6
⊢ (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) = (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) |
44 | 42, 43 | fvmptg 5561 |
. . . . 5
⊢ ((𝑘 ∈ 𝑍 ∧ (abs‘(𝐹‘𝑘)) ∈ ℝ) → ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘) = (abs‘(𝐹‘𝑘))) |
45 | 38, 41, 44 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘) = (abs‘(𝐹‘𝑘))) |
46 | 45, 41 | eqeltrd 2242 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘) ∈ ℝ) |
47 | | explecnv.7 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) |
48 | 38, 47 | syldan 280 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) |
49 | 48, 45, 34 | 3brtr4d 4013 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘)) |
50 | 40 | absge0d 11122 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ (abs‘(𝐹‘𝑘))) |
51 | 50, 45 | breqtrrd 4009 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘)) |
52 | 1, 9, 13, 20, 37, 46, 49, 51 | climsqz2 11273 |
. 2
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) ⇝ 0) |
53 | | explecnv.2 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
54 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
55 | 39 | abscld 11119 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
56 | 54, 55, 44 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛)))‘𝑘) = (abs‘(𝐹‘𝑘))) |
57 | 15, 3, 53, 20, 39, 56 | climabs0 11244 |
. 2
⊢ (𝜑 → (𝐹 ⇝ 0 ↔ (𝑛 ∈ 𝑍 ↦ (abs‘(𝐹‘𝑛))) ⇝ 0)) |
58 | 52, 57 | mpbird 166 |
1
⊢ (𝜑 → 𝐹 ⇝ 0) |