ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  explecnv GIF version

Theorem explecnv 11689
Description: A sequence of terms converges to zero when it is less than powers of a number 𝐴 whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
explecnv.1 𝑍 = (ℤ𝑀)
explecnv.2 (𝜑𝐹𝑉)
explecnv.3 (𝜑𝑀 ∈ ℤ)
explecnv.5 (𝜑𝐴 ∈ ℝ)
explecnv.4 (𝜑 → (abs‘𝐴) < 1)
explecnv.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
explecnv.7 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
Assertion
Ref Expression
explecnv (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝐹   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem explecnv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3 (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))
2 0z 9356 . . . 4 0 ∈ ℤ
3 explecnv.3 . . . 4 (𝜑𝑀 ∈ ℤ)
4 0zd 9357 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 0 ∈ ℤ)
5 simpr 110 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
6 zdcle 9421 . . . . . 6 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 ≤ 0)
76ancoms 268 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑀 ≤ 0)
84, 5, 7ifcldcd 3598 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ)
92, 3, 8sylancr 414 . . 3 (𝜑 → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ)
10 explecnv.5 . . . . 5 (𝜑𝐴 ∈ ℝ)
1110recnd 8074 . . . 4 (𝜑𝐴 ∈ ℂ)
12 explecnv.4 . . . 4 (𝜑 → (abs‘𝐴) < 1)
1311, 12expcnv 11688 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
14 zex 9354 . . . . . 6 ℤ ∈ V
15 explecnv.1 . . . . . . 7 𝑍 = (ℤ𝑀)
16 uzssz 9640 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
1715, 16eqsstri 3216 . . . . . 6 𝑍 ⊆ ℤ
1814, 17ssexi 4172 . . . . 5 𝑍 ∈ V
1918mptex 5791 . . . 4 (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ∈ V
2019a1i 9 . . 3 (𝜑 → (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ∈ V)
21 nn0uz 9655 . . . . . . . . . 10 0 = (ℤ‘0)
2215, 21ineq12i 3363 . . . . . . . . 9 (𝑍 ∩ ℕ0) = ((ℤ𝑀) ∩ (ℤ‘0))
23 uzin 9653 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ‘0)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)))
243, 2, 23sylancl 413 . . . . . . . . 9 (𝜑 → ((ℤ𝑀) ∩ (ℤ‘0)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)))
2522, 24eqtr2id 2242 . . . . . . . 8 (𝜑 → (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) = (𝑍 ∩ ℕ0))
2625eleq2d 2266 . . . . . . 7 (𝜑 → (𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) ↔ 𝑘 ∈ (𝑍 ∩ ℕ0)))
2726biimpa 296 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ (𝑍 ∩ ℕ0))
2827elin2d 3354 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ ℕ0)
2911adantr 276 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℂ)
3029, 28expcld 10784 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴𝑘) ∈ ℂ)
31 oveq2 5933 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
32 eqid 2196 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
3331, 32fvmptg 5640 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3428, 30, 33syl2anc 411 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3510adantr 276 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℝ)
3635, 28reexpcld 10801 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴𝑘) ∈ ℝ)
3734, 36eqeltrd 2273 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℝ)
3827elin1d 3353 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘𝑍)
39 explecnv.6 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4038, 39syldan 282 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐹𝑘) ∈ ℂ)
4140abscld 11365 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹𝑘)) ∈ ℝ)
42 2fveq3 5566 . . . . . 6 (𝑛 = 𝑘 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑘)))
43 eqid 2196 . . . . . 6 (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) = (𝑛𝑍 ↦ (abs‘(𝐹𝑛)))
4442, 43fvmptg 5640 . . . . 5 ((𝑘𝑍 ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
4538, 41, 44syl2anc 411 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
4645, 41eqeltrd 2273 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) ∈ ℝ)
47 explecnv.7 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
4838, 47syldan 282 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
4948, 45, 343brtr4d 4066 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘))
5040absge0d 11368 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ (abs‘(𝐹𝑘)))
5150, 45breqtrrd 4062 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘))
521, 9, 13, 20, 37, 46, 49, 51climsqz2 11520 . 2 (𝜑 → (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ⇝ 0)
53 explecnv.2 . . 3 (𝜑𝐹𝑉)
54 simpr 110 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
5539abscld 11365 . . . 4 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
5654, 55, 44syl2anc 411 . . 3 ((𝜑𝑘𝑍) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
5715, 3, 53, 20, 39, 56climabs0 11491 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ⇝ 0))
5852, 57mpbird 167 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  Vcvv 2763  cin 3156  ifcif 3562   class class class wbr 4034  cmpt 4095  cfv 5259  (class class class)co 5925  cc 7896  cr 7897  0cc0 7898  1c1 7899   < clt 8080  cle 8081  0cn0 9268  cz 9345  cuz 9620  cexp 10649  abscabs 11181  cli 11462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator