Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  explecnv GIF version

Theorem explecnv 10960
 Description: A sequence of terms converges to zero when it is less than powers of a number 𝐴 whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
explecnv.1 𝑍 = (ℤ𝑀)
explecnv.2 (𝜑𝐹𝑉)
explecnv.3 (𝜑𝑀 ∈ ℤ)
explecnv.5 (𝜑𝐴 ∈ ℝ)
explecnv.4 (𝜑 → (abs‘𝐴) < 1)
explecnv.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
explecnv.7 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
Assertion
Ref Expression
explecnv (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝐹   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem explecnv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eqid 2089 . . 3 (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))
2 0z 8822 . . . 4 0 ∈ ℤ
3 explecnv.3 . . . 4 (𝜑𝑀 ∈ ℤ)
4 0zd 8823 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 0 ∈ ℤ)
5 simpr 109 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
6 zdcle 8884 . . . . . 6 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 ≤ 0)
76ancoms 265 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑀 ≤ 0)
84, 5, 7ifcldcd 3430 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ)
92, 3, 8sylancr 406 . . 3 (𝜑 → if(𝑀 ≤ 0, 0, 𝑀) ∈ ℤ)
10 explecnv.5 . . . . 5 (𝜑𝐴 ∈ ℝ)
1110recnd 7577 . . . 4 (𝜑𝐴 ∈ ℂ)
12 explecnv.4 . . . 4 (𝜑 → (abs‘𝐴) < 1)
1311, 12expcnv 10959 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
14 zex 8820 . . . . . 6 ℤ ∈ V
15 explecnv.1 . . . . . . 7 𝑍 = (ℤ𝑀)
16 uzssz 9099 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
1715, 16eqsstri 3057 . . . . . 6 𝑍 ⊆ ℤ
1814, 17ssexi 3983 . . . . 5 𝑍 ∈ V
1918mptex 5537 . . . 4 (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ∈ V
2019a1i 9 . . 3 (𝜑 → (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ∈ V)
21 nn0uz 9114 . . . . . . . . . 10 0 = (ℤ‘0)
2215, 21ineq12i 3200 . . . . . . . . 9 (𝑍 ∩ ℕ0) = ((ℤ𝑀) ∩ (ℤ‘0))
23 uzin 9112 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ‘0)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)))
243, 2, 23sylancl 405 . . . . . . . . 9 (𝜑 → ((ℤ𝑀) ∩ (ℤ‘0)) = (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)))
2522, 24syl5req 2134 . . . . . . . 8 (𝜑 → (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) = (𝑍 ∩ ℕ0))
2625eleq2d 2158 . . . . . . 7 (𝜑 → (𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀)) ↔ 𝑘 ∈ (𝑍 ∩ ℕ0)))
2726biimpa 291 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ (𝑍 ∩ ℕ0))
2827elin2d 3191 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘 ∈ ℕ0)
2911adantr 271 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℂ)
3029, 28expcld 10147 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴𝑘) ∈ ℂ)
31 oveq2 5674 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
32 eqid 2089 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
3331, 32fvmptg 5393 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3428, 30, 33syl2anc 404 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3510adantr 271 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝐴 ∈ ℝ)
3635, 28reexpcld 10164 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐴𝑘) ∈ ℝ)
3734, 36eqeltrd 2165 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℝ)
3827elin1d 3190 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 𝑘𝑍)
39 explecnv.6 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4038, 39syldan 277 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (𝐹𝑘) ∈ ℂ)
4140abscld 10675 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹𝑘)) ∈ ℝ)
42 2fveq3 5323 . . . . . 6 (𝑛 = 𝑘 → (abs‘(𝐹𝑛)) = (abs‘(𝐹𝑘)))
43 eqid 2089 . . . . . 6 (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) = (𝑛𝑍 ↦ (abs‘(𝐹𝑛)))
4442, 43fvmptg 5393 . . . . 5 ((𝑘𝑍 ∧ (abs‘(𝐹𝑘)) ∈ ℝ) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
4538, 41, 44syl2anc 404 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
4645, 41eqeltrd 2165 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) ∈ ℝ)
47 explecnv.7 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
4838, 47syldan 277 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → (abs‘(𝐹𝑘)) ≤ (𝐴𝑘))
4948, 45, 343brtr4d 3881 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘))
5040absge0d 10678 . . . 4 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ (abs‘(𝐹𝑘)))
5150, 45breqtrrd 3877 . . 3 ((𝜑𝑘 ∈ (ℤ‘if(𝑀 ≤ 0, 0, 𝑀))) → 0 ≤ ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘))
521, 9, 13, 20, 37, 46, 49, 51climsqz2 10785 . 2 (𝜑 → (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ⇝ 0)
53 explecnv.2 . . 3 (𝜑𝐹𝑉)
54 simpr 109 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
5539abscld 10675 . . . 4 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
5654, 55, 44syl2anc 404 . . 3 ((𝜑𝑘𝑍) → ((𝑛𝑍 ↦ (abs‘(𝐹𝑛)))‘𝑘) = (abs‘(𝐹𝑘)))
5715, 3, 53, 20, 39, 56climabs0 10757 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ (𝑛𝑍 ↦ (abs‘(𝐹𝑛))) ⇝ 0))
5852, 57mpbird 166 1 (𝜑𝐹 ⇝ 0)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103  DECID wdc 781   = wceq 1290   ∈ wcel 1439  Vcvv 2620   ∩ cin 2999  ifcif 3397   class class class wbr 3851   ↦ cmpt 3905  ‘cfv 5028  (class class class)co 5666  ℂcc 7409  ℝcr 7410  0cc0 7411  1c1 7412   < clt 7583   ≤ cle 7584  ℕ0cn0 8734  ℤcz 8811  ℤ≥cuz 9080  ↑cexp 10015  abscabs 10491   ⇝ cli 10727 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526 This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-iseq 9914  df-seq3 9915  df-exp 10016  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator