ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sralmod GIF version

Theorem sralmod 14084
Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
sralmod.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
Assertion
Ref Expression
sralmod (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)

Proof of Theorem sralmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sralmod.a . . . 4 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
21a1i 9 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 eqid 2196 . . . 4 (Base‘𝑊) = (Base‘𝑊)
43subrgss 13856 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
5 subrgrcl 13860 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Ring)
62, 4, 5srabaseg 14073 . 2 (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝐴))
72, 4, 5sraaddgg 14074 . 2 (𝑆 ∈ (SubRing‘𝑊) → (+g𝑊) = (+g𝐴))
82, 4, 5srascag 14076 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑊s 𝑆) = (Scalar‘𝐴))
92, 4, 5sravscag 14077 . 2 (𝑆 ∈ (SubRing‘𝑊) → (.r𝑊) = ( ·𝑠𝐴))
10 eqidd 2197 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (𝑊s 𝑆) = (𝑊s 𝑆))
11 eqidd 2197 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝑊))
12 id 19 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ∈ (SubRing‘𝑊))
1310, 11, 5, 12ressbasd 12772 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑆 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝑆)))
14 eqidd 2197 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (+g𝑊) = (+g𝑊))
1510, 14, 12, 5ressplusgd 12833 . 2 (𝑆 ∈ (SubRing‘𝑊) → (+g𝑊) = (+g‘(𝑊s 𝑆)))
16 eqid 2196 . . . 4 (𝑊s 𝑆) = (𝑊s 𝑆)
17 eqid 2196 . . . 4 (.r𝑊) = (.r𝑊)
1816, 17ressmulrg 12849 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑊 ∈ Ring) → (.r𝑊) = (.r‘(𝑊s 𝑆)))
195, 18mpdan 421 . 2 (𝑆 ∈ (SubRing‘𝑊) → (.r𝑊) = (.r‘(𝑊s 𝑆)))
20 eqid 2196 . . 3 (1r𝑊) = (1r𝑊)
2116, 20subrg1 13865 . 2 (𝑆 ∈ (SubRing‘𝑊) → (1r𝑊) = (1r‘(𝑊s 𝑆)))
2216subrgring 13858 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑊s 𝑆) ∈ Ring)
235ringgrpd 13639 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Grp)
247oveqdr 5953 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐴)𝑦))
2511, 6, 24grppropd 13221 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (𝑊 ∈ Grp ↔ 𝐴 ∈ Grp))
2623, 25mpbid 147 . 2 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ Grp)
2753ad2ant1 1020 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring)
28 elinel2 3351 . . . 4 (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
29283ad2ant2 1021 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
30 simp3 1001 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
313, 17ringcl 13647 . . 3 ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) ∈ (Base‘𝑊))
3227, 29, 30, 31syl3anc 1249 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) ∈ (Base‘𝑊))
335adantr 276 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
34 simpr1 1005 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)))
3534elin2d 3354 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
36 simpr2 1006 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
37 simpr3 1007 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
38 eqid 2196 . . . 4 (+g𝑊) = (+g𝑊)
393, 38, 17ringdi 13652 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)(𝑦(+g𝑊)𝑧)) = ((𝑥(.r𝑊)𝑦)(+g𝑊)(𝑥(.r𝑊)𝑧)))
4033, 35, 36, 37, 39syl13anc 1251 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)(𝑦(+g𝑊)𝑧)) = ((𝑥(.r𝑊)𝑦)(+g𝑊)(𝑥(.r𝑊)𝑧)))
415adantr 276 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
42 simpr1 1005 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)))
4342elin2d 3354 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
44 simpr2 1006 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)))
4544elin2d 3354 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
46 simpr3 1007 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
473, 38, 17ringdir 13653 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)(.r𝑊)𝑧) = ((𝑥(.r𝑊)𝑧)(+g𝑊)(𝑦(.r𝑊)𝑧)))
4841, 43, 45, 46, 47syl13anc 1251 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)(.r𝑊)𝑧) = ((𝑥(.r𝑊)𝑧)(+g𝑊)(𝑦(.r𝑊)𝑧)))
493, 17ringass 13650 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
5041, 43, 45, 46, 49syl13anc 1251 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
513, 17, 20ringlidm 13657 . . 3 ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊)) → ((1r𝑊)(.r𝑊)𝑥) = 𝑥)
525, 51sylan 283 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊)) → ((1r𝑊)(.r𝑊)𝑥) = 𝑥)
536, 7, 8, 9, 13, 15, 19, 21, 22, 26, 32, 40, 48, 50, 52islmodd 13927 1 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cin 3156  cfv 5259  (class class class)co 5925  Basecbs 12705  s cress 12706  +gcplusg 12782  .rcmulr 12783  Grpcgrp 13204  1rcur 13593  Ringcrg 13630  SubRingcsubrg 13851  LModclmod 13921  subringAlg csra 14067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-ip 12800  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-subg 13378  df-mgp 13555  df-ur 13594  df-ring 13632  df-subrg 13853  df-lmod 13923  df-sra 14069
This theorem is referenced by:  rlmlmod  14098
  Copyright terms: Public domain W3C validator