ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcresi GIF version

Theorem limcresi 15138
Description: Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)

Proof of Theorem limcresi
Dummy variables 𝑑 𝑒 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 15130 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp1d 1012 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐹:dom 𝐹⟶ℂ)
31simp2d 1013 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → dom 𝐹 ⊆ ℂ)
41simp3d 1014 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
52, 3, 4ellimc3ap 15133 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))))
65ibi 176 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
7 inss1 3393 . . . . . . . . 9 (dom 𝐹𝐶) ⊆ dom 𝐹
8 ssralv 3257 . . . . . . . . 9 ((dom 𝐹𝐶) ⊆ dom 𝐹 → (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
97, 8ax-mp 5 . . . . . . . 8 (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))
10 elinel2 3360 . . . . . . . . . . . . . . 15 (𝑢 ∈ (dom 𝐹𝐶) → 𝑢𝐶)
11 fvres 5600 . . . . . . . . . . . . . . 15 (𝑢𝐶 → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1210, 11syl 14 . . . . . . . . . . . . . 14 (𝑢 ∈ (dom 𝐹𝐶) → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1312adantl 277 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1413fvoveq1d 5966 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) = (abs‘((𝐹𝑢) − 𝑥)))
1514breq1d 4054 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → ((abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒 ↔ (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))
1615imbi2d 230 . . . . . . . . . 10 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒) ↔ ((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
1716biimprd 158 . . . . . . . . 9 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
1817ralimdva 2573 . . . . . . . 8 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
199, 18syl5 32 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2019reximdv 2607 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2120ralimdv 2574 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2221anim2d 337 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → ((𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒))))
236, 22mpd 13 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
24 fresin 5454 . . . . 5 (𝐹:dom 𝐹⟶ℂ → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
252, 24syl 14 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
267, 3sstrid 3204 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (dom 𝐹𝐶) ⊆ ℂ)
2725, 26, 4ellimc3ap 15133 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒))))
2823, 27mpbird 167 . 2 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ((𝐹𝐶) lim 𝐵))
2928ssriv 3197 1 (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wral 2484  wrex 2485  cin 3165  wss 3166   class class class wbr 4044  dom cdm 4675  cres 4677  wf 5267  cfv 5271  (class class class)co 5944  cc 7923   < clt 8107  cmin 8243   # cap 8654  +crp 9775  abscabs 11308   lim climc 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pm 6738  df-limced 15128
This theorem is referenced by:  dvidlemap  15163  dvidrelem  15164  dvidsslem  15165  dvcnp2cntop  15171  dvcoapbr  15179
  Copyright terms: Public domain W3C validator