Step | Hyp | Ref
| Expression |
1 | | limcrcl 13421 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
2 | 1 | simp1d 1004 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝐹:dom 𝐹⟶ℂ) |
3 | 1 | simp2d 1005 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → dom 𝐹 ⊆ ℂ) |
4 | 1 | simp3d 1006 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝐵 ∈ ℂ) |
5 | 2, 3, 4 | ellimc3ap 13424 |
. . . . 5
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒)))) |
6 | 5 | ibi 175 |
. . . 4
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒))) |
7 | | inss1 3347 |
. . . . . . . . 9
⊢ (dom
𝐹 ∩ 𝐶) ⊆ dom 𝐹 |
8 | | ssralv 3211 |
. . . . . . . . 9
⊢ ((dom
𝐹 ∩ 𝐶) ⊆ dom 𝐹 → (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹 ∩ 𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒))) |
9 | 7, 8 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑢 ∈
dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹 ∩ 𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒)) |
10 | | elinel2 3314 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ (dom 𝐹 ∩ 𝐶) → 𝑢 ∈ 𝐶) |
11 | | fvres 5520 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑢) = (𝐹‘𝑢)) |
12 | 10, 11 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ (dom 𝐹 ∩ 𝐶) → ((𝐹 ↾ 𝐶)‘𝑢) = (𝐹‘𝑢)) |
13 | 12 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝐹 limℂ 𝐵) ∧ 𝑢 ∈ (dom 𝐹 ∩ 𝐶)) → ((𝐹 ↾ 𝐶)‘𝑢) = (𝐹‘𝑢)) |
14 | 13 | fvoveq1d 5875 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (𝐹 limℂ 𝐵) ∧ 𝑢 ∈ (dom 𝐹 ∩ 𝐶)) → (abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) = (abs‘((𝐹‘𝑢) − 𝑥))) |
15 | 14 | breq1d 3999 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝐹 limℂ 𝐵) ∧ 𝑢 ∈ (dom 𝐹 ∩ 𝐶)) → ((abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) < 𝑒 ↔ (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒)) |
16 | 15 | imbi2d 229 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝐹 limℂ 𝐵) ∧ 𝑢 ∈ (dom 𝐹 ∩ 𝐶)) → (((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) < 𝑒) ↔ ((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒))) |
17 | 16 | biimprd 157 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝐹 limℂ 𝐵) ∧ 𝑢 ∈ (dom 𝐹 ∩ 𝐶)) → (((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒) → ((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) < 𝑒))) |
18 | 17 | ralimdva 2537 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (∀𝑢 ∈ (dom 𝐹 ∩ 𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹 ∩ 𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) < 𝑒))) |
19 | 9, 18 | syl5 32 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹 ∩ 𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) < 𝑒))) |
20 | 19 | reximdv 2571 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒) → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ (dom 𝐹 ∩ 𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) < 𝑒))) |
21 | 20 | ralimdv 2538 |
. . . . 5
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒) → ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑢 ∈ (dom 𝐹 ∩ 𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) < 𝑒))) |
22 | 21 | anim2d 335 |
. . . 4
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → ((𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘((𝐹‘𝑢) − 𝑥)) < 𝑒)) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑢 ∈ (dom 𝐹 ∩ 𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) < 𝑒)))) |
23 | 6, 22 | mpd 13 |
. . 3
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑢 ∈ (dom 𝐹 ∩ 𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) < 𝑒))) |
24 | | fresin 5376 |
. . . . 5
⊢ (𝐹:dom 𝐹⟶ℂ → (𝐹 ↾ 𝐶):(dom 𝐹 ∩ 𝐶)⟶ℂ) |
25 | 2, 24 | syl 14 |
. . . 4
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐹 ↾ 𝐶):(dom 𝐹 ∩ 𝐶)⟶ℂ) |
26 | 7, 3 | sstrid 3158 |
. . . 4
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (dom 𝐹 ∩ 𝐶) ⊆ ℂ) |
27 | 25, 26, 4 | ellimc3ap 13424 |
. . 3
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑢 ∈ (dom 𝐹 ∩ 𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢 − 𝐵)) < 𝑑) → (abs‘(((𝐹 ↾ 𝐶)‘𝑢) − 𝑥)) < 𝑒)))) |
28 | 23, 27 | mpbird 166 |
. 2
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵)) |
29 | 28 | ssriv 3151 |
1
⊢ (𝐹 limℂ 𝐵) ⊆ ((𝐹 ↾ 𝐶) limℂ 𝐵) |