ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcresi GIF version

Theorem limcresi 13176
Description: Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)

Proof of Theorem limcresi
Dummy variables 𝑑 𝑒 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 13168 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp1d 998 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐹:dom 𝐹⟶ℂ)
31simp2d 999 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → dom 𝐹 ⊆ ℂ)
41simp3d 1000 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
52, 3, 4ellimc3ap 13171 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))))
65ibi 175 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
7 inss1 3337 . . . . . . . . 9 (dom 𝐹𝐶) ⊆ dom 𝐹
8 ssralv 3201 . . . . . . . . 9 ((dom 𝐹𝐶) ⊆ dom 𝐹 → (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
97, 8ax-mp 5 . . . . . . . 8 (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))
10 elinel2 3304 . . . . . . . . . . . . . . 15 (𝑢 ∈ (dom 𝐹𝐶) → 𝑢𝐶)
11 fvres 5504 . . . . . . . . . . . . . . 15 (𝑢𝐶 → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1210, 11syl 14 . . . . . . . . . . . . . 14 (𝑢 ∈ (dom 𝐹𝐶) → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1312adantl 275 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1413fvoveq1d 5858 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) = (abs‘((𝐹𝑢) − 𝑥)))
1514breq1d 3986 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → ((abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒 ↔ (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))
1615imbi2d 229 . . . . . . . . . 10 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒) ↔ ((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
1716biimprd 157 . . . . . . . . 9 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
1817ralimdva 2531 . . . . . . . 8 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
199, 18syl5 32 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2019reximdv 2565 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2120ralimdv 2532 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2221anim2d 335 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → ((𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒))))
236, 22mpd 13 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
24 fresin 5360 . . . . 5 (𝐹:dom 𝐹⟶ℂ → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
252, 24syl 14 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
267, 3sstrid 3148 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (dom 𝐹𝐶) ⊆ ℂ)
2725, 26, 4ellimc3ap 13171 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒))))
2823, 27mpbird 166 . 2 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ((𝐹𝐶) lim 𝐵))
2928ssriv 3141 1 (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  wral 2442  wrex 2443  cin 3110  wss 3111   class class class wbr 3976  dom cdm 4598  cres 4600  wf 5178  cfv 5182  (class class class)co 5836  cc 7742   < clt 7924  cmin 8060   # cap 8470  +crp 9580  abscabs 10925   lim climc 13164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pm 6608  df-limced 13166
This theorem is referenced by:  dvidlemap  13201  dvcnp2cntop  13204  dvcoapbr  13212
  Copyright terms: Public domain W3C validator