ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcresi GIF version

Theorem limcresi 14902
Description: Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)

Proof of Theorem limcresi
Dummy variables 𝑑 𝑒 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 14894 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp1d 1011 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐹:dom 𝐹⟶ℂ)
31simp2d 1012 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → dom 𝐹 ⊆ ℂ)
41simp3d 1013 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
52, 3, 4ellimc3ap 14897 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))))
65ibi 176 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
7 inss1 3383 . . . . . . . . 9 (dom 𝐹𝐶) ⊆ dom 𝐹
8 ssralv 3247 . . . . . . . . 9 ((dom 𝐹𝐶) ⊆ dom 𝐹 → (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
97, 8ax-mp 5 . . . . . . . 8 (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))
10 elinel2 3350 . . . . . . . . . . . . . . 15 (𝑢 ∈ (dom 𝐹𝐶) → 𝑢𝐶)
11 fvres 5582 . . . . . . . . . . . . . . 15 (𝑢𝐶 → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1210, 11syl 14 . . . . . . . . . . . . . 14 (𝑢 ∈ (dom 𝐹𝐶) → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1312adantl 277 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1413fvoveq1d 5944 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) = (abs‘((𝐹𝑢) − 𝑥)))
1514breq1d 4043 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → ((abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒 ↔ (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))
1615imbi2d 230 . . . . . . . . . 10 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒) ↔ ((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
1716biimprd 158 . . . . . . . . 9 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
1817ralimdva 2564 . . . . . . . 8 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
199, 18syl5 32 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2019reximdv 2598 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2120ralimdv 2565 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2221anim2d 337 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → ((𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒))))
236, 22mpd 13 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
24 fresin 5436 . . . . 5 (𝐹:dom 𝐹⟶ℂ → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
252, 24syl 14 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
267, 3sstrid 3194 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (dom 𝐹𝐶) ⊆ ℂ)
2725, 26, 4ellimc3ap 14897 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒))))
2823, 27mpbird 167 . 2 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ((𝐹𝐶) lim 𝐵))
2928ssriv 3187 1 (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cin 3156  wss 3157   class class class wbr 4033  dom cdm 4663  cres 4665  wf 5254  cfv 5258  (class class class)co 5922  cc 7877   < clt 8061  cmin 8197   # cap 8608  +crp 9728  abscabs 11162   lim climc 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pm 6710  df-limced 14892
This theorem is referenced by:  dvidlemap  14927  dvidrelem  14928  dvidsslem  14929  dvcnp2cntop  14935  dvcoapbr  14943
  Copyright terms: Public domain W3C validator