ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcresi GIF version

Theorem limcresi 13429
Description: Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)

Proof of Theorem limcresi
Dummy variables 𝑑 𝑒 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 13421 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp1d 1004 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐹:dom 𝐹⟶ℂ)
31simp2d 1005 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → dom 𝐹 ⊆ ℂ)
41simp3d 1006 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
52, 3, 4ellimc3ap 13424 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))))
65ibi 175 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
7 inss1 3347 . . . . . . . . 9 (dom 𝐹𝐶) ⊆ dom 𝐹
8 ssralv 3211 . . . . . . . . 9 ((dom 𝐹𝐶) ⊆ dom 𝐹 → (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
97, 8ax-mp 5 . . . . . . . 8 (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))
10 elinel2 3314 . . . . . . . . . . . . . . 15 (𝑢 ∈ (dom 𝐹𝐶) → 𝑢𝐶)
11 fvres 5520 . . . . . . . . . . . . . . 15 (𝑢𝐶 → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1210, 11syl 14 . . . . . . . . . . . . . 14 (𝑢 ∈ (dom 𝐹𝐶) → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1312adantl 275 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → ((𝐹𝐶)‘𝑢) = (𝐹𝑢))
1413fvoveq1d 5875 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) = (abs‘((𝐹𝑢) − 𝑥)))
1514breq1d 3999 . . . . . . . . . . 11 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → ((abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒 ↔ (abs‘((𝐹𝑢) − 𝑥)) < 𝑒))
1615imbi2d 229 . . . . . . . . . 10 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒) ↔ ((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)))
1716biimprd 157 . . . . . . . . 9 ((𝑥 ∈ (𝐹 lim 𝐵) ∧ 𝑢 ∈ (dom 𝐹𝐶)) → (((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
1817ralimdva 2537 . . . . . . . 8 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
199, 18syl5 32 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2019reximdv 2571 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2120ralimdv 2538 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
2221anim2d 335 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → ((𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ dom 𝐹((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘((𝐹𝑢) − 𝑥)) < 𝑒)) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒))))
236, 22mpd 13 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒)))
24 fresin 5376 . . . . 5 (𝐹:dom 𝐹⟶ℂ → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
252, 24syl 14 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
267, 3sstrid 3158 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (dom 𝐹𝐶) ⊆ ℂ)
2725, 26, 4ellimc3ap 13424 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑢 ∈ (dom 𝐹𝐶)((𝑢 # 𝐵 ∧ (abs‘(𝑢𝐵)) < 𝑑) → (abs‘(((𝐹𝐶)‘𝑢) − 𝑥)) < 𝑒))))
2823, 27mpbird 166 . 2 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ((𝐹𝐶) lim 𝐵))
2928ssriv 3151 1 (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wrex 2449  cin 3120  wss 3121   class class class wbr 3989  dom cdm 4611  cres 4613  wf 5194  cfv 5198  (class class class)co 5853  cc 7772   < clt 7954  cmin 8090   # cap 8500  +crp 9610  abscabs 10961   lim climc 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pm 6629  df-limced 13419
This theorem is referenced by:  dvidlemap  13454  dvcnp2cntop  13457  dvcoapbr  13465
  Copyright terms: Public domain W3C validator