ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blres GIF version

Theorem blres 14754
Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blres.2 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
blres ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))

Proof of Theorem blres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elinel2 3351 . . . . . . . . 9 (𝑃 ∈ (𝑋𝑌) → 𝑃𝑌)
2 blres.2 . . . . . . . . . . 11 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))
32oveqi 5938 . . . . . . . . . 10 (𝑃𝐶𝑥) = (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥)
4 ovres 6067 . . . . . . . . . 10 ((𝑃𝑌𝑥𝑌) → (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥) = (𝑃𝐷𝑥))
53, 4eqtrid 2241 . . . . . . . . 9 ((𝑃𝑌𝑥𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥))
61, 5sylan 283 . . . . . . . 8 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥))
76breq1d 4044 . . . . . . 7 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → ((𝑃𝐶𝑥) < 𝑅 ↔ (𝑃𝐷𝑥) < 𝑅))
87anbi2d 464 . . . . . 6 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → ((𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
98pm5.32da 452 . . . . 5 (𝑃 ∈ (𝑋𝑌) → ((𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
1093ad2ant2 1021 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
11 elin 3347 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋𝑥𝑌))
12 ancom 266 . . . . . . 7 ((𝑥𝑋𝑥𝑌) ↔ (𝑥𝑌𝑥𝑋))
1311, 12bitri 184 . . . . . 6 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑌𝑥𝑋))
1413anbi1i 458 . . . . 5 ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥𝑌𝑥𝑋) ∧ (𝑃𝐶𝑥) < 𝑅))
15 anass 401 . . . . 5 (((𝑥𝑌𝑥𝑋) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)))
1614, 15bitri 184 . . . 4 ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)))
17 ancom 266 . . . 4 (((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1810, 16, 173bitr4g 223 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
19 xmetres 14702 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
202, 19eqeltrid 2283 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐶 ∈ (∞Met‘(𝑋𝑌)))
21 elbl 14711 . . . 4 ((𝐶 ∈ (∞Met‘(𝑋𝑌)) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅)))
2220, 21syl3an1 1282 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅)))
23 elin 3347 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑌))
24 elinel1 3350 . . . . . 6 (𝑃 ∈ (𝑋𝑌) → 𝑃𝑋)
25 elbl 14711 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2624, 25syl3an2 1283 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2726anbi1d 465 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑌) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
2823, 27bitrid 192 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
2918, 22, 283bitr4d 220 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌)))
3029eqrdv 2194 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  cin 3156   class class class wbr 4034   × cxp 4662  cres 4666  cfv 5259  (class class class)co 5925  *cxr 8077   < clt 8078  ∞Metcxmet 14168  ballcbl 14170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-psmet 14175  df-xmet 14176  df-bl 14178
This theorem is referenced by:  metrest  14826
  Copyright terms: Public domain W3C validator