ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blres GIF version

Theorem blres 12975
Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blres.2 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
blres ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))

Proof of Theorem blres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elinel2 3304 . . . . . . . . 9 (𝑃 ∈ (𝑋𝑌) → 𝑃𝑌)
2 blres.2 . . . . . . . . . . 11 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))
32oveqi 5849 . . . . . . . . . 10 (𝑃𝐶𝑥) = (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥)
4 ovres 5972 . . . . . . . . . 10 ((𝑃𝑌𝑥𝑌) → (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥) = (𝑃𝐷𝑥))
53, 4syl5eq 2209 . . . . . . . . 9 ((𝑃𝑌𝑥𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥))
61, 5sylan 281 . . . . . . . 8 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥))
76breq1d 3986 . . . . . . 7 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → ((𝑃𝐶𝑥) < 𝑅 ↔ (𝑃𝐷𝑥) < 𝑅))
87anbi2d 460 . . . . . 6 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → ((𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
98pm5.32da 448 . . . . 5 (𝑃 ∈ (𝑋𝑌) → ((𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
1093ad2ant2 1008 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
11 elin 3300 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋𝑥𝑌))
12 ancom 264 . . . . . . 7 ((𝑥𝑋𝑥𝑌) ↔ (𝑥𝑌𝑥𝑋))
1311, 12bitri 183 . . . . . 6 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑌𝑥𝑋))
1413anbi1i 454 . . . . 5 ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥𝑌𝑥𝑋) ∧ (𝑃𝐶𝑥) < 𝑅))
15 anass 399 . . . . 5 (((𝑥𝑌𝑥𝑋) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)))
1614, 15bitri 183 . . . 4 ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)))
17 ancom 264 . . . 4 (((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1810, 16, 173bitr4g 222 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
19 xmetres 12923 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
202, 19eqeltrid 2251 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐶 ∈ (∞Met‘(𝑋𝑌)))
21 elbl 12932 . . . 4 ((𝐶 ∈ (∞Met‘(𝑋𝑌)) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅)))
2220, 21syl3an1 1260 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅)))
23 elin 3300 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑌))
24 elinel1 3303 . . . . . 6 (𝑃 ∈ (𝑋𝑌) → 𝑃𝑋)
25 elbl 12932 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2624, 25syl3an2 1261 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2726anbi1d 461 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑌) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
2823, 27syl5bb 191 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
2918, 22, 283bitr4d 219 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌)))
3029eqrdv 2162 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135  cin 3110   class class class wbr 3976   × cxp 4596  cres 4600  cfv 5182  (class class class)co 5836  *cxr 7923   < clt 7924  ∞Metcxmet 12521  ballcbl 12523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-map 6607  df-pnf 7926  df-mnf 7927  df-xr 7928  df-psmet 12528  df-xmet 12529  df-bl 12531
This theorem is referenced by:  metrest  13047
  Copyright terms: Public domain W3C validator