| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfop | GIF version | ||
| Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) | 
| Ref | Expression | 
|---|---|
| dfop.1 | ⊢ 𝐴 ∈ V | 
| dfop.2 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| dfop | ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfop.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dfop.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | dfopg 3806 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3622 {cpr 3623 〈cop 3625 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-op 3631 | 
| This theorem is referenced by: opid 3826 elop 4264 opi1 4265 opi2 4266 opeqsn 4285 opeqpr 4286 uniop 4288 op1stb 4513 xpsspw 4775 relop 4816 funopg 5292 | 
| Copyright terms: Public domain | W3C validator |