ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfop GIF version

Theorem dfop 3803
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
dfop.1 𝐴 ∈ V
dfop.2 𝐵 ∈ V
Assertion
Ref Expression
dfop 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2 𝐴 ∈ V
2 dfop.2 . 2 𝐵 ∈ V
3 dfopg 3802 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
41, 2, 3mp2an 426 1 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618  {cpr 3619  cop 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762  df-op 3627
This theorem is referenced by:  opid  3822  elop  4260  opi1  4261  opi2  4262  opeqsn  4281  opeqpr  4282  uniop  4284  op1stb  4509  xpsspw  4771  relop  4812  funopg  5288
  Copyright terms: Public domain W3C validator