| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfop | GIF version | ||
| Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| dfop.1 | ⊢ 𝐴 ∈ V |
| dfop.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dfop | ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfop.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dfop.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | dfopg 3816 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 Vcvv 2771 {csn 3632 {cpr 3633 〈cop 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 df-op 3641 |
| This theorem is referenced by: opid 3836 elop 4274 opi1 4275 opi2 4276 opeqsn 4295 opeqpr 4296 uniop 4298 op1stb 4523 xpsspw 4785 relop 4826 funopg 5302 |
| Copyright terms: Public domain | W3C validator |