| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfop | GIF version | ||
| Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| dfop.1 | ⊢ 𝐴 ∈ V |
| dfop.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dfop | ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfop.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dfop.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | dfopg 3823 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3638 {cpr 3639 〈cop 3641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 df-op 3647 |
| This theorem is referenced by: opid 3843 elop 4283 opi1 4284 opi2 4285 opeqsn 4305 opeqpr 4306 uniop 4308 op1stb 4533 xpsspw 4795 relop 4836 funopg 5314 funopsn 5775 |
| Copyright terms: Public domain | W3C validator |