![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfop | GIF version |
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
dfop.1 | ⊢ 𝐴 ∈ V |
dfop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfop | ⊢ ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfop.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | dfop.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | dfopg 3778 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 Vcvv 2739 {csn 3594 {cpr 3595 ⟨cop 3597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 df-op 3603 |
This theorem is referenced by: opid 3798 elop 4233 opi1 4234 opi2 4235 opeqsn 4254 opeqpr 4255 uniop 4257 op1stb 4480 xpsspw 4740 relop 4779 funopg 5252 |
Copyright terms: Public domain | W3C validator |