![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpr | GIF version |
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elpr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elprg 3470 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 665 = wceq 1290 ∈ wcel 1439 Vcvv 2620 {cpr 3451 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-un 3004 df-sn 3456 df-pr 3457 |
This theorem is referenced by: prmg 3567 difprsnss 3581 preqr1 3618 preq12b 3620 prel12 3621 pwprss 3655 pwtpss 3656 unipr 3673 intpr 3726 zfpair2 4046 elop 4067 ordtri2or2exmidlem 4355 onsucelsucexmidlem 4358 en2lp 4383 reg3exmidlemwe 4407 xpsspw 4563 acexmidlem2 5663 2oconcl 6217 exmidpw 6678 renfdisj 7607 fzpr 9552 maxabslemval 10702 isprm2 11438 bj-zfpair2 12074 ss1oel2o 12161 |
Copyright terms: Public domain | W3C validator |