ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpr GIF version

Theorem elpr 3597
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
Hypothesis
Ref Expression
elpr.1 𝐴 ∈ V
Assertion
Ref Expression
elpr (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))

Proof of Theorem elpr
StepHypRef Expression
1 elpr.1 . 2 𝐴 ∈ V
2 elprg 3596 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
31, 2ax-mp 5 1 (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 698   = wceq 1343  wcel 2136  Vcvv 2726  {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  prmg  3697  difprsnss  3711  preqr1  3748  preq12b  3750  prel12  3751  pwprss  3785  pwtpss  3786  unipr  3803  intpr  3856  zfpair2  4188  elop  4209  ordtri2or2exmidlem  4503  onsucelsucexmidlem  4506  en2lp  4531  reg3exmidlemwe  4556  xpsspw  4716  acexmidlem2  5839  2oconcl  6407  exmidpw  6874  exmidpweq  6875  renfdisj  7958  fzpr  10012  maxabslemval  11150  xrmaxiflemval  11191  isprm2  12049  bj-zfpair2  13792  ss1oel2o  13873
  Copyright terms: Public domain W3C validator