ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwg GIF version

Theorem elpwg 3609
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.)
Assertion
Ref Expression
elpwg (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem elpwg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2256 . 2 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵𝐴 ∈ 𝒫 𝐵))
2 sseq1 3202 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 vex 2763 . . 3 𝑥 ∈ V
43elpw 3607 . 2 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
51, 2, 4vtoclbg 2821 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2164  wss 3153  𝒫 cpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603
This theorem is referenced by:  elpwi  3610  elpwb  3611  pwidg  3615  prsspwg  3778  elpw2g  4185  snelpwi  4241  prelpwi  4243  pwel  4247  eldifpw  4508  f1opw2  6124  2pwuninelg  6336  tfrlemibfn  6381  tfr1onlembfn  6397  tfrcllembfn  6410  elpmg  6718  pw2f1odclem  6890  fopwdom  6892  fiinopn  14172  ssntr  14290
  Copyright terms: Public domain W3C validator