![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpwg | GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
Ref | Expression |
---|---|
elpwg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2252 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵 ↔ 𝐴 ∈ 𝒫 𝐵)) | |
2 | sseq1 3193 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | vex 2755 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | elpw 3596 | . 2 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
5 | 1, 2, 4 | vtoclbg 2813 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2160 ⊆ wss 3144 𝒫 cpw 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-in 3150 df-ss 3157 df-pw 3592 |
This theorem is referenced by: elpwi 3599 elpwb 3600 pwidg 3604 prsspwg 3767 elpw2g 4174 snelpwi 4230 prelpwi 4232 pwel 4236 eldifpw 4495 f1opw2 6100 2pwuninelg 6308 tfrlemibfn 6353 tfr1onlembfn 6369 tfrcllembfn 6382 elpmg 6690 pw2f1odclem 6862 fopwdom 6864 fiinopn 13964 ssntr 14082 |
Copyright terms: Public domain | W3C validator |