ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwg GIF version

Theorem elpwg 3613
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.)
Assertion
Ref Expression
elpwg (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem elpwg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . 2 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵𝐴 ∈ 𝒫 𝐵))
2 sseq1 3206 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 vex 2766 . . 3 𝑥 ∈ V
43elpw 3611 . 2 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
51, 2, 4vtoclbg 2825 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2167  wss 3157  𝒫 cpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  elpwi  3614  elpwb  3615  pwidg  3619  prsspwg  3782  elpw2g  4189  snelpwi  4245  prelpwi  4247  pwel  4251  eldifpw  4512  f1opw2  6129  2pwuninelg  6341  tfrlemibfn  6386  tfr1onlembfn  6402  tfrcllembfn  6415  elpmg  6723  pw2f1odclem  6895  fopwdom  6897  fiinopn  14240  ssntr  14358
  Copyright terms: Public domain W3C validator