| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwg | GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpwg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2272 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵 ↔ 𝐴 ∈ 𝒫 𝐵)) | |
| 2 | sseq1 3227 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | vex 2782 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | elpw 3635 | . 2 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
| 5 | 1, 2, 4 | vtoclbg 2842 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2180 ⊆ wss 3177 𝒫 cpw 3629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-ss 3190 df-pw 3631 |
| This theorem is referenced by: elpwi 3638 elpwb 3639 pwidg 3643 prsspwg 3807 elpw2g 4219 snelpwg 4275 snelpwi 4276 prelpw 4278 prelpwi 4279 pwel 4283 eldifpw 4545 f1opw2 6182 2pwuninelg 6399 tfrlemibfn 6444 tfr1onlembfn 6460 tfrcllembfn 6473 elpmg 6781 pw2f1odclem 6963 fopwdom 6965 fiinopn 14643 ssntr 14761 incistruhgr 15855 upgr1edc 15886 |
| Copyright terms: Public domain | W3C validator |