| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwg | GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpwg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵 ↔ 𝐴 ∈ 𝒫 𝐵)) | |
| 2 | sseq1 3207 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | vex 2766 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | elpw 3612 | . 2 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
| 5 | 1, 2, 4 | vtoclbg 2825 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 ⊆ wss 3157 𝒫 cpw 3606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 |
| This theorem is referenced by: elpwi 3615 elpwb 3616 pwidg 3620 prsspwg 3783 elpw2g 4190 snelpwi 4246 prelpwi 4248 pwel 4252 eldifpw 4513 f1opw2 6133 2pwuninelg 6350 tfrlemibfn 6395 tfr1onlembfn 6411 tfrcllembfn 6424 elpmg 6732 pw2f1odclem 6904 fopwdom 6906 fiinopn 14324 ssntr 14442 |
| Copyright terms: Public domain | W3C validator |