ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwg GIF version

Theorem elpwg 3585
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.)
Assertion
Ref Expression
elpwg (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem elpwg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2240 . 2 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵𝐴 ∈ 𝒫 𝐵))
2 sseq1 3180 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 vex 2742 . . 3 𝑥 ∈ V
43elpw 3583 . 2 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
51, 2, 4vtoclbg 2800 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2148  wss 3131  𝒫 cpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by:  elpwi  3586  elpwb  3587  pwidg  3591  prsspwg  3754  elpw2g  4158  snelpwi  4214  prelpwi  4216  pwel  4220  eldifpw  4479  f1opw2  6080  2pwuninelg  6287  tfrlemibfn  6332  tfr1onlembfn  6348  tfrcllembfn  6361  elpmg  6667  fopwdom  6839  fiinopn  13665  ssntr  13783
  Copyright terms: Public domain W3C validator