ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwg GIF version

Theorem elpwg 3637
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.)
Assertion
Ref Expression
elpwg (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem elpwg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2272 . 2 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵𝐴 ∈ 𝒫 𝐵))
2 sseq1 3227 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 vex 2782 . . 3 𝑥 ∈ V
43elpw 3635 . 2 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
51, 2, 4vtoclbg 2842 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2180  wss 3177  𝒫 cpw 3629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-ss 3190  df-pw 3631
This theorem is referenced by:  elpwi  3638  elpwb  3639  pwidg  3643  prsspwg  3807  elpw2g  4219  snelpwg  4275  snelpwi  4276  prelpw  4278  prelpwi  4279  pwel  4283  eldifpw  4545  f1opw2  6182  2pwuninelg  6399  tfrlemibfn  6444  tfr1onlembfn  6460  tfrcllembfn  6473  elpmg  6781  pw2f1odclem  6963  fopwdom  6965  fiinopn  14643  ssntr  14761  incistruhgr  15855  upgr1edc  15886
  Copyright terms: Public domain W3C validator