ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwg GIF version

Theorem elpwg 3441
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.)
Assertion
Ref Expression
elpwg (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem elpwg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2151 . 2 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵𝐴 ∈ 𝒫 𝐵))
2 sseq1 3048 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 vex 2623 . . 3 𝑥 ∈ V
43elpw 3439 . 2 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
51, 2, 4vtoclbg 2681 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1439  wss 3000  𝒫 cpw 3433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-in 3006  df-ss 3013  df-pw 3435
This theorem is referenced by:  elpwi  3442  elpwb  3443  pwidg  3447  prsspwg  3602  elpw2g  3998  snelpwi  4048  prelpwi  4050  pwel  4054  eldifpw  4312  f1opw2  5864  2pwuninelg  6062  tfrlemibfn  6107  tfr1onlembfn  6123  tfrcllembfn  6136  elpmg  6435  fopwdom  6606  fiinopn  11757  ssntr  11876
  Copyright terms: Public domain W3C validator