![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpwg | GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
Ref | Expression |
---|---|
elpwg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2151 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵 ↔ 𝐴 ∈ 𝒫 𝐵)) | |
2 | sseq1 3048 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | vex 2623 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | elpw 3439 | . 2 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
5 | 1, 2, 4 | vtoclbg 2681 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 1439 ⊆ wss 3000 𝒫 cpw 3433 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-in 3006 df-ss 3013 df-pw 3435 |
This theorem is referenced by: elpwi 3442 elpwb 3443 pwidg 3447 prsspwg 3602 elpw2g 3998 snelpwi 4048 prelpwi 4050 pwel 4054 eldifpw 4312 f1opw2 5864 2pwuninelg 6062 tfrlemibfn 6107 tfr1onlembfn 6123 tfrcllembfn 6136 elpmg 6435 fopwdom 6606 fiinopn 11757 ssntr 11876 |
Copyright terms: Public domain | W3C validator |