ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwg GIF version

Theorem elpwg 3572
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.)
Assertion
Ref Expression
elpwg (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))

Proof of Theorem elpwg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2233 . 2 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐵𝐴 ∈ 𝒫 𝐵))
2 sseq1 3170 . 2 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
3 vex 2733 . . 3 𝑥 ∈ V
43elpw 3570 . 2 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
51, 2, 4vtoclbg 2791 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2141  wss 3121  𝒫 cpw 3564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3566
This theorem is referenced by:  elpwi  3573  elpwb  3574  pwidg  3578  prsspwg  3737  elpw2g  4140  snelpwi  4195  prelpwi  4197  pwel  4201  eldifpw  4460  f1opw2  6052  2pwuninelg  6259  tfrlemibfn  6304  tfr1onlembfn  6320  tfrcllembfn  6333  elpmg  6638  fopwdom  6810  fiinopn  12717  ssntr  12837
  Copyright terms: Public domain W3C validator