![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > wrdnval | GIF version |
Description: Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Proof shortened by AV, 13-May-2020.) |
Ref | Expression |
---|---|
wrdnval | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑𝑚 (0..^𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2481 | . 2 ⊢ {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)} | |
2 | 0z 9328 | . . . . . 6 ⊢ 0 ∈ ℤ | |
3 | nn0z 9337 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
4 | 3 | adantl 277 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
5 | fzofig 10503 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin) | |
6 | 2, 4, 5 | sylancr 414 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (0..^𝑁) ∈ Fin) |
7 | elmapg 6715 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ (0..^𝑁) ∈ Fin) → (𝑤 ∈ (𝑉 ↑𝑚 (0..^𝑁)) ↔ 𝑤:(0..^𝑁)⟶𝑉)) | |
8 | 6, 7 | syldan 282 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉 ↑𝑚 (0..^𝑁)) ↔ 𝑤:(0..^𝑁)⟶𝑉)) |
9 | simpr 110 | . . . . . . . 8 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → 𝑤:(0..^𝑁)⟶𝑉) | |
10 | simplr 528 | . . . . . . . 8 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → 𝑁 ∈ ℕ0) | |
11 | iswrdinn0 10919 | . . . . . . . 8 ⊢ ((𝑤:(0..^𝑁)⟶𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑤 ∈ Word 𝑉) | |
12 | 9, 10, 11 | syl2anc 411 | . . . . . . 7 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → 𝑤 ∈ Word 𝑉) |
13 | fnfzo0hash 10906 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤:(0..^𝑁)⟶𝑉) → (♯‘𝑤) = 𝑁) | |
14 | 13 | adantll 476 | . . . . . . 7 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → (♯‘𝑤) = 𝑁) |
15 | 12, 14 | jca 306 | . . . . . 6 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)) |
16 | 15 | ex 115 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤:(0..^𝑁)⟶𝑉 → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
17 | wrdf 10920 | . . . . . . 7 ⊢ (𝑤 ∈ Word 𝑉 → 𝑤:(0..^(♯‘𝑤))⟶𝑉) | |
18 | oveq2 5926 | . . . . . . . 8 ⊢ ((♯‘𝑤) = 𝑁 → (0..^(♯‘𝑤)) = (0..^𝑁)) | |
19 | 18 | feq2d 5391 | . . . . . . 7 ⊢ ((♯‘𝑤) = 𝑁 → (𝑤:(0..^(♯‘𝑤))⟶𝑉 ↔ 𝑤:(0..^𝑁)⟶𝑉)) |
20 | 17, 19 | syl5ibcom 155 | . . . . . 6 ⊢ (𝑤 ∈ Word 𝑉 → ((♯‘𝑤) = 𝑁 → 𝑤:(0..^𝑁)⟶𝑉)) |
21 | 20 | imp 124 | . . . . 5 ⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁) → 𝑤:(0..^𝑁)⟶𝑉) |
22 | 16, 21 | impbid1 142 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤:(0..^𝑁)⟶𝑉 ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
23 | 8, 22 | bitrd 188 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉 ↑𝑚 (0..^𝑁)) ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
24 | 23 | eqabdv 2322 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑉 ↑𝑚 (0..^𝑁)) = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)}) |
25 | 1, 24 | eqtr4id 2245 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑𝑚 (0..^𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 {crab 2476 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 ↑𝑚 cmap 6702 Fincfn 6794 0cc0 7872 ℕ0cn0 9240 ℤcz 9317 ..^cfzo 10208 ♯chash 10846 Word cword 10914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-1o 6469 df-er 6587 df-map 6704 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-fzo 10209 df-ihash 10847 df-word 10915 |
This theorem is referenced by: wrdmap 10945 |
Copyright terms: Public domain | W3C validator |