ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wrdval GIF version

Theorem wrdval 10940
Description: Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
wrdval (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)))
Distinct variable groups:   𝑆,𝑙   𝑉,𝑙

Proof of Theorem wrdval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-word 10938 . 2 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
2 eliun 3921 . . . 4 (𝑤 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆𝑚 (0..^𝑙)))
3 simpl 109 . . . . . 6 ((𝑆𝑉𝑙 ∈ ℕ0) → 𝑆𝑉)
4 0zd 9340 . . . . . . 7 ((𝑆𝑉𝑙 ∈ ℕ0) → 0 ∈ ℤ)
5 nn0z 9348 . . . . . . . 8 (𝑙 ∈ ℕ0𝑙 ∈ ℤ)
65adantl 277 . . . . . . 7 ((𝑆𝑉𝑙 ∈ ℕ0) → 𝑙 ∈ ℤ)
7 fzofig 10526 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑙 ∈ ℤ) → (0..^𝑙) ∈ Fin)
84, 6, 7syl2anc 411 . . . . . 6 ((𝑆𝑉𝑙 ∈ ℕ0) → (0..^𝑙) ∈ Fin)
93, 8elmapd 6722 . . . . 5 ((𝑆𝑉𝑙 ∈ ℕ0) → (𝑤 ∈ (𝑆𝑚 (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆))
109rexbidva 2494 . . . 4 (𝑆𝑉 → (∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆𝑚 (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
112, 10bitrid 192 . . 3 (𝑆𝑉 → (𝑤 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
1211eqabdv 2325 . 2 (𝑆𝑉 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
131, 12eqtr4id 2248 1 (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {cab 2182  wrex 2476   ciun 3917  wf 5255  (class class class)co 5923  𝑚 cmap 6708  Fincfn 6800  0cc0 7881  0cn0 9251  cz 9328  ..^cfzo 10219  Word cword 10937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-1o 6475  df-er 6593  df-map 6710  df-en 6801  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-n0 9252  df-z 9329  df-uz 9604  df-fz 10086  df-fzo 10220  df-word 10938
This theorem is referenced by:  wrdexg  10948
  Copyright terms: Public domain W3C validator