ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsn GIF version

Theorem rspsn 14100
Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
rspsn.b 𝐵 = (Base‘𝑅)
rspsn.k 𝐾 = (RSpan‘𝑅)
rspsn.d = (∥r𝑅)
Assertion
Ref Expression
rspsn ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
Distinct variable groups:   𝑥,𝑅   𝑥,𝐺   𝑥,𝐵   𝑥,𝐾   𝑥,

Proof of Theorem rspsn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2198 . . . . 5 (𝑥 = (𝑎(.r𝑅)𝐺) ↔ (𝑎(.r𝑅)𝐺) = 𝑥)
21a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 = (𝑎(.r𝑅)𝐺) ↔ (𝑎(.r𝑅)𝐺) = 𝑥))
32rexbidv 2498 . . 3 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (∃𝑎𝐵 𝑥 = (𝑎(.r𝑅)𝐺) ↔ ∃𝑎𝐵 (𝑎(.r𝑅)𝐺) = 𝑥))
4 rlmlmod 14030 . . . . 5 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
5 simpr 110 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺𝐵)
6 rspsn.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 rlmbasg 14021 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
86, 7eqtrid 2241 . . . . . . 7 (𝑅 ∈ Ring → 𝐵 = (Base‘(ringLMod‘𝑅)))
98adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐵 = (Base‘(ringLMod‘𝑅)))
105, 9eleqtrd 2275 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺 ∈ (Base‘(ringLMod‘𝑅)))
11 eqid 2196 . . . . . 6 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
12 eqid 2196 . . . . . 6 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
13 eqid 2196 . . . . . 6 (Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅))
14 eqid 2196 . . . . . 6 ( ·𝑠 ‘(ringLMod‘𝑅)) = ( ·𝑠 ‘(ringLMod‘𝑅))
15 eqid 2196 . . . . . 6 (LSpan‘(ringLMod‘𝑅)) = (LSpan‘(ringLMod‘𝑅))
1611, 12, 13, 14, 15ellspsn 13983 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐺 ∈ (Base‘(ringLMod‘𝑅))) → (𝑥 ∈ ((LSpan‘(ringLMod‘𝑅))‘{𝐺}) ↔ ∃𝑎 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝑥 = (𝑎( ·𝑠 ‘(ringLMod‘𝑅))𝐺)))
174, 10, 16syl2an2r 595 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 ∈ ((LSpan‘(ringLMod‘𝑅))‘{𝐺}) ↔ ∃𝑎 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝑥 = (𝑎( ·𝑠 ‘(ringLMod‘𝑅))𝐺)))
18 rspsn.k . . . . . . . 8 𝐾 = (RSpan‘𝑅)
19 rspvalg 14038 . . . . . . . 8 (𝑅 ∈ Ring → (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)))
2018, 19eqtrid 2241 . . . . . . 7 (𝑅 ∈ Ring → 𝐾 = (LSpan‘(ringLMod‘𝑅)))
2120adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐾 = (LSpan‘(ringLMod‘𝑅)))
2221fveq1d 5561 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = ((LSpan‘(ringLMod‘𝑅))‘{𝐺}))
2322eleq2d 2266 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝑥 ∈ ((LSpan‘(ringLMod‘𝑅))‘{𝐺})))
24 rlmscabas 14026 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
256, 24eqtrid 2241 . . . . . 6 (𝑅 ∈ Ring → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
2625adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
27 rlmvscag 14027 . . . . . . . 8 (𝑅 ∈ Ring → (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)))
2827adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)))
2928oveqd 5940 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑎(.r𝑅)𝐺) = (𝑎( ·𝑠 ‘(ringLMod‘𝑅))𝐺))
3029eqeq2d 2208 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 = (𝑎(.r𝑅)𝐺) ↔ 𝑥 = (𝑎( ·𝑠 ‘(ringLMod‘𝑅))𝐺)))
3126, 30rexeqbidv 2710 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (∃𝑎𝐵 𝑥 = (𝑎(.r𝑅)𝐺) ↔ ∃𝑎 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝑥 = (𝑎( ·𝑠 ‘(ringLMod‘𝑅))𝐺)))
3217, 23, 313bitr4d 220 . . 3 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ ∃𝑎𝐵 𝑥 = (𝑎(.r𝑅)𝐺)))
336a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐵 = (Base‘𝑅))
34 rspsn.d . . . . 5 = (∥r𝑅)
3534a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → = (∥r𝑅))
36 ringsrg 13613 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
3736adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝑅 ∈ SRing)
38 eqid 2196 . . . . 5 (.r𝑅) = (.r𝑅)
3938a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (.r𝑅) = (.r𝑅))
4033, 35, 37, 39, 5dvdsr2d 13661 . . 3 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺 𝑥 ↔ ∃𝑎𝐵 (𝑎(.r𝑅)𝐺) = 𝑥))
413, 32, 403bitr4d 220 . 2 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝐺 𝑥))
4241eqabdv 2325 1 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wrex 2476  {csn 3623   class class class wbr 4034  cfv 5259  (class class class)co 5923  Basecbs 12688  .rcmulr 12766  Scalarcsca 12768   ·𝑠 cvsca 12769  SRingcsrg 13529  Ringcrg 13562  rcdsr 13652  LModclmod 13853  LSpanclspn 13952  ringLModcrglmod 14000  RSpancrsp 14034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-pre-ltirr 7993  ax-pre-lttrn 7995  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-pnf 8065  df-mnf 8066  df-ltxr 8068  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-5 9054  df-6 9055  df-7 9056  df-8 9057  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-iress 12696  df-plusg 12778  df-mulr 12779  df-sca 12781  df-vsca 12782  df-ip 12783  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-minusg 13146  df-sbg 13147  df-subg 13310  df-cmn 13426  df-abl 13427  df-mgp 13487  df-ur 13526  df-srg 13530  df-ring 13564  df-dvdsr 13655  df-subrg 13785  df-lmod 13855  df-lssm 13919  df-lsp 13953  df-sra 14001  df-rgmod 14002  df-rsp 14036
This theorem is referenced by:  zndvds  14215
  Copyright terms: Public domain W3C validator