ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsn GIF version

Theorem rspsn 14411
Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
rspsn.b 𝐵 = (Base‘𝑅)
rspsn.k 𝐾 = (RSpan‘𝑅)
rspsn.d = (∥r𝑅)
Assertion
Ref Expression
rspsn ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
Distinct variable groups:   𝑥,𝑅   𝑥,𝐺   𝑥,𝐵   𝑥,𝐾   𝑥,

Proof of Theorem rspsn
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2209 . . . . 5 (𝑥 = (𝑎(.r𝑅)𝐺) ↔ (𝑎(.r𝑅)𝐺) = 𝑥)
21a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 = (𝑎(.r𝑅)𝐺) ↔ (𝑎(.r𝑅)𝐺) = 𝑥))
32rexbidv 2509 . . 3 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (∃𝑎𝐵 𝑥 = (𝑎(.r𝑅)𝐺) ↔ ∃𝑎𝐵 (𝑎(.r𝑅)𝐺) = 𝑥))
4 rlmlmod 14341 . . . . 5 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
5 simpr 110 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺𝐵)
6 rspsn.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 rlmbasg 14332 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
86, 7eqtrid 2252 . . . . . . 7 (𝑅 ∈ Ring → 𝐵 = (Base‘(ringLMod‘𝑅)))
98adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐵 = (Base‘(ringLMod‘𝑅)))
105, 9eleqtrd 2286 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺 ∈ (Base‘(ringLMod‘𝑅)))
11 eqid 2207 . . . . . 6 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
12 eqid 2207 . . . . . 6 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
13 eqid 2207 . . . . . 6 (Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅))
14 eqid 2207 . . . . . 6 ( ·𝑠 ‘(ringLMod‘𝑅)) = ( ·𝑠 ‘(ringLMod‘𝑅))
15 eqid 2207 . . . . . 6 (LSpan‘(ringLMod‘𝑅)) = (LSpan‘(ringLMod‘𝑅))
1611, 12, 13, 14, 15ellspsn 14294 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐺 ∈ (Base‘(ringLMod‘𝑅))) → (𝑥 ∈ ((LSpan‘(ringLMod‘𝑅))‘{𝐺}) ↔ ∃𝑎 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝑥 = (𝑎( ·𝑠 ‘(ringLMod‘𝑅))𝐺)))
174, 10, 16syl2an2r 595 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 ∈ ((LSpan‘(ringLMod‘𝑅))‘{𝐺}) ↔ ∃𝑎 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝑥 = (𝑎( ·𝑠 ‘(ringLMod‘𝑅))𝐺)))
18 rspsn.k . . . . . . . 8 𝐾 = (RSpan‘𝑅)
19 rspvalg 14349 . . . . . . . 8 (𝑅 ∈ Ring → (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)))
2018, 19eqtrid 2252 . . . . . . 7 (𝑅 ∈ Ring → 𝐾 = (LSpan‘(ringLMod‘𝑅)))
2120adantr 276 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐾 = (LSpan‘(ringLMod‘𝑅)))
2221fveq1d 5601 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = ((LSpan‘(ringLMod‘𝑅))‘{𝐺}))
2322eleq2d 2277 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝑥 ∈ ((LSpan‘(ringLMod‘𝑅))‘{𝐺})))
24 rlmscabas 14337 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
256, 24eqtrid 2252 . . . . . 6 (𝑅 ∈ Ring → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
2625adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
27 rlmvscag 14338 . . . . . . . 8 (𝑅 ∈ Ring → (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)))
2827adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)))
2928oveqd 5984 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑎(.r𝑅)𝐺) = (𝑎( ·𝑠 ‘(ringLMod‘𝑅))𝐺))
3029eqeq2d 2219 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 = (𝑎(.r𝑅)𝐺) ↔ 𝑥 = (𝑎( ·𝑠 ‘(ringLMod‘𝑅))𝐺)))
3126, 30rexeqbidv 2722 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (∃𝑎𝐵 𝑥 = (𝑎(.r𝑅)𝐺) ↔ ∃𝑎 ∈ (Base‘(Scalar‘(ringLMod‘𝑅)))𝑥 = (𝑎( ·𝑠 ‘(ringLMod‘𝑅))𝐺)))
3217, 23, 313bitr4d 220 . . 3 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ ∃𝑎𝐵 𝑥 = (𝑎(.r𝑅)𝐺)))
336a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐵 = (Base‘𝑅))
34 rspsn.d . . . . 5 = (∥r𝑅)
3534a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → = (∥r𝑅))
36 ringsrg 13924 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
3736adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝑅 ∈ SRing)
38 eqid 2207 . . . . 5 (.r𝑅) = (.r𝑅)
3938a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (.r𝑅) = (.r𝑅))
4033, 35, 37, 39, 5dvdsr2d 13972 . . 3 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺 𝑥 ↔ ∃𝑎𝐵 (𝑎(.r𝑅)𝐺) = 𝑥))
413, 32, 403bitr4d 220 . 2 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝐺 𝑥))
4241eqabdv 2336 1 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  {cab 2193  wrex 2487  {csn 3643   class class class wbr 4059  cfv 5290  (class class class)co 5967  Basecbs 12947  .rcmulr 13025  Scalarcsca 13027   ·𝑠 cvsca 13028  SRingcsrg 13840  Ringcrg 13873  rcdsr 13963  LModclmod 14164  LSpanclspn 14263  ringLModcrglmod 14311  RSpancrsp 14345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-sca 13040  df-vsca 13041  df-ip 13042  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-subg 13621  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-dvdsr 13966  df-subrg 14096  df-lmod 14166  df-lssm 14230  df-lsp 14264  df-sra 14312  df-rgmod 14313  df-rsp 14347
This theorem is referenced by:  zndvds  14526
  Copyright terms: Public domain W3C validator