| Step | Hyp | Ref
| Expression |
| 1 | | eqcom 2198 |
. . . . 5
⊢ (𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ (𝑎(.r‘𝑅)𝐺) = 𝑥) |
| 2 | 1 | a1i 9 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 3 | 2 | rexbidv 2498 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (∃𝑎 ∈ 𝐵 𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ ∃𝑎 ∈ 𝐵 (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 4 | | rlmlmod 14020 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(ringLMod‘𝑅) ∈
LMod) |
| 5 | | simpr 110 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
| 6 | | rspsn.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 7 | | rlmbasg 14011 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘(ringLMod‘𝑅))) |
| 8 | 6, 7 | eqtrid 2241 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝐵 =
(Base‘(ringLMod‘𝑅))) |
| 9 | 8 | adantr 276 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → 𝐵 = (Base‘(ringLMod‘𝑅))) |
| 10 | 5, 9 | eleqtrd 2275 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ (Base‘(ringLMod‘𝑅))) |
| 11 | | eqid 2196 |
. . . . . 6
⊢
(Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) |
| 12 | | eqid 2196 |
. . . . . 6
⊢
(Base‘(Scalar‘(ringLMod‘𝑅))) =
(Base‘(Scalar‘(ringLMod‘𝑅))) |
| 13 | | eqid 2196 |
. . . . . 6
⊢
(Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅)) |
| 14 | | eqid 2196 |
. . . . . 6
⊢ (
·𝑠 ‘(ringLMod‘𝑅)) = ( ·𝑠
‘(ringLMod‘𝑅)) |
| 15 | | eqid 2196 |
. . . . . 6
⊢
(LSpan‘(ringLMod‘𝑅)) = (LSpan‘(ringLMod‘𝑅)) |
| 16 | 11, 12, 13, 14, 15 | ellspsn 13973 |
. . . . 5
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ 𝐺 ∈
(Base‘(ringLMod‘𝑅))) → (𝑥 ∈ ((LSpan‘(ringLMod‘𝑅))‘{𝐺}) ↔ ∃𝑎 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))𝑥 = (𝑎( ·𝑠
‘(ringLMod‘𝑅))𝐺))) |
| 17 | 4, 10, 16 | syl2an2r 595 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ ((LSpan‘(ringLMod‘𝑅))‘{𝐺}) ↔ ∃𝑎 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))𝑥 = (𝑎( ·𝑠
‘(ringLMod‘𝑅))𝐺))) |
| 18 | | rspsn.k |
. . . . . . . 8
⊢ 𝐾 = (RSpan‘𝑅) |
| 19 | | rspvalg 14028 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(RSpan‘𝑅) =
(LSpan‘(ringLMod‘𝑅))) |
| 20 | 18, 19 | eqtrid 2241 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝐾 =
(LSpan‘(ringLMod‘𝑅))) |
| 21 | 20 | adantr 276 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → 𝐾 = (LSpan‘(ringLMod‘𝑅))) |
| 22 | 21 | fveq1d 5560 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = ((LSpan‘(ringLMod‘𝑅))‘{𝐺})) |
| 23 | 22 | eleq2d 2266 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝑥 ∈ ((LSpan‘(ringLMod‘𝑅))‘{𝐺}))) |
| 24 | | rlmscabas 14016 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 25 | 6, 24 | eqtrid 2241 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝐵 =
(Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 26 | 25 | adantr 276 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → 𝐵 =
(Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 27 | | rlmvscag 14017 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(.r‘𝑅) = (
·𝑠 ‘(ringLMod‘𝑅))) |
| 28 | 27 | adantr 276 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (.r‘𝑅) = (
·𝑠 ‘(ringLMod‘𝑅))) |
| 29 | 28 | oveqd 5939 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑎(.r‘𝑅)𝐺) = (𝑎( ·𝑠
‘(ringLMod‘𝑅))𝐺)) |
| 30 | 29 | eqeq2d 2208 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ 𝑥 = (𝑎( ·𝑠
‘(ringLMod‘𝑅))𝐺))) |
| 31 | 26, 30 | rexeqbidv 2710 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (∃𝑎 ∈ 𝐵 𝑥 = (𝑎(.r‘𝑅)𝐺) ↔ ∃𝑎 ∈
(Base‘(Scalar‘(ringLMod‘𝑅)))𝑥 = (𝑎( ·𝑠
‘(ringLMod‘𝑅))𝐺))) |
| 32 | 17, 23, 31 | 3bitr4d 220 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ ∃𝑎 ∈ 𝐵 𝑥 = (𝑎(.r‘𝑅)𝐺))) |
| 33 | 6 | a1i 9 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 34 | | rspsn.d |
. . . . 5
⊢ ∥ =
(∥r‘𝑅) |
| 35 | 34 | a1i 9 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → ∥ =
(∥r‘𝑅)) |
| 36 | | ringsrg 13603 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| 37 | 36 | adantr 276 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → 𝑅 ∈ SRing) |
| 38 | | eqid 2196 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 39 | 38 | a1i 9 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (.r‘𝑅) = (.r‘𝑅)) |
| 40 | 33, 35, 37, 39, 5 | dvdsr2d 13651 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐺 ∥ 𝑥 ↔ ∃𝑎 ∈ 𝐵 (𝑎(.r‘𝑅)𝐺) = 𝑥)) |
| 41 | 3, 32, 40 | 3bitr4d 220 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝐺 ∥ 𝑥)) |
| 42 | 41 | eqabdv 2325 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) |