ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpssmapg GIF version

Theorem ixpssmapg 6629
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
ixpssmapg (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmapg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpfn 6605 . . . . . . 7 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
2 fndm 5229 . . . . . . . 8 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
3 vex 2692 . . . . . . . . 9 𝑓 ∈ V
43dmex 4812 . . . . . . . 8 dom 𝑓 ∈ V
52, 4eqeltrrdi 2232 . . . . . . 7 (𝑓 Fn 𝐴𝐴 ∈ V)
61, 5syl 14 . . . . . 6 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
7 id 19 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵𝑉)
8 iunexg 6024 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
96, 7, 8syl2anr 288 . . . . 5 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ V)
10 ixpssmap2g 6628 . . . . 5 ( 𝑥𝐴 𝐵 ∈ V → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
119, 10syl 14 . . . 4 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
12 simpr 109 . . . 4 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓X𝑥𝐴 𝐵)
1311, 12sseldd 3102 . . 3 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴))
1413ex 114 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝑓X𝑥𝐴 𝐵𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴)))
1514ssrdv 3107 1 (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1481  wral 2417  Vcvv 2689  wss 3075   ciun 3820  dom cdm 4546   Fn wfn 5125  (class class class)co 5781  𝑚 cmap 6549  Xcixp 6599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-map 6551  df-ixp 6600
This theorem is referenced by:  ixpssmap  6633
  Copyright terms: Public domain W3C validator