| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixpssmap2g | GIF version | ||
| Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 6865 avoids ax-coll 4198. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| ixpssmap2g | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpf 6857 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
| 3 | ixpfn 6841 | . . . . . 6 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 Fn 𝐴) | |
| 4 | fndm 5416 | . . . . . . 7 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
| 5 | vex 2802 | . . . . . . . 8 ⊢ 𝑓 ∈ V | |
| 6 | 5 | dmex 4987 | . . . . . . 7 ⊢ dom 𝑓 ∈ V |
| 7 | 4, 6 | eqeltrrdi 2321 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
| 8 | 3, 7 | syl 14 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
| 9 | elmapg 6798 | . . . . 5 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 10 | 8, 9 | sylan2 286 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → (𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵)) |
| 11 | 2, 10 | mpbird 167 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
| 12 | 11 | ex 115 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴))) |
| 13 | 12 | ssrdv 3230 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ∪ ciun 3964 dom cdm 4716 Fn wfn 5309 ⟶wf 5310 (class class class)co 5994 ↑𝑚 cmap 6785 Xcixp 6835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-map 6787 df-ixp 6836 |
| This theorem is referenced by: ixpssmapg 6865 prdsval 13292 |
| Copyright terms: Public domain | W3C validator |