ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpssmap2g GIF version

Theorem ixpssmap2g 6693
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 6694 avoids ax-coll 4097. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
ixpssmap2g ( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmap2g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpf 6686 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓:𝐴 𝑥𝐴 𝐵)
21adantl 275 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓:𝐴 𝑥𝐴 𝐵)
3 ixpfn 6670 . . . . . 6 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
4 fndm 5287 . . . . . . 7 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
5 vex 2729 . . . . . . . 8 𝑓 ∈ V
65dmex 4870 . . . . . . 7 dom 𝑓 ∈ V
74, 6eqeltrrdi 2258 . . . . . 6 (𝑓 Fn 𝐴𝐴 ∈ V)
83, 7syl 14 . . . . 5 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
9 elmapg 6627 . . . . 5 (( 𝑥𝐴 𝐵𝑉𝐴 ∈ V) → (𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴) ↔ 𝑓:𝐴 𝑥𝐴 𝐵))
108, 9sylan2 284 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → (𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴) ↔ 𝑓:𝐴 𝑥𝐴 𝐵))
112, 10mpbird 166 . . 3 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴))
1211ex 114 . 2 ( 𝑥𝐴 𝐵𝑉 → (𝑓X𝑥𝐴 𝐵𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴)))
1312ssrdv 3148 1 ( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2136  Vcvv 2726  wss 3116   ciun 3866  dom cdm 4604   Fn wfn 5183  wf 5184  (class class class)co 5842  𝑚 cmap 6614  Xcixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616  df-ixp 6665
This theorem is referenced by:  ixpssmapg  6694
  Copyright terms: Public domain W3C validator