ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpssmap2g GIF version

Theorem ixpssmap2g 6781
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 6782 avoids ax-coll 4144. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
ixpssmap2g ( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmap2g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpf 6774 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓:𝐴 𝑥𝐴 𝐵)
21adantl 277 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓:𝐴 𝑥𝐴 𝐵)
3 ixpfn 6758 . . . . . 6 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
4 fndm 5353 . . . . . . 7 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
5 vex 2763 . . . . . . . 8 𝑓 ∈ V
65dmex 4928 . . . . . . 7 dom 𝑓 ∈ V
74, 6eqeltrrdi 2285 . . . . . 6 (𝑓 Fn 𝐴𝐴 ∈ V)
83, 7syl 14 . . . . 5 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
9 elmapg 6715 . . . . 5 (( 𝑥𝐴 𝐵𝑉𝐴 ∈ V) → (𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴) ↔ 𝑓:𝐴 𝑥𝐴 𝐵))
108, 9sylan2 286 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → (𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴) ↔ 𝑓:𝐴 𝑥𝐴 𝐵))
112, 10mpbird 167 . . 3 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴))
1211ex 115 . 2 ( 𝑥𝐴 𝐵𝑉 → (𝑓X𝑥𝐴 𝐵𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴)))
1312ssrdv 3185 1 ( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  Vcvv 2760  wss 3153   ciun 3912  dom cdm 4659   Fn wfn 5249  wf 5250  (class class class)co 5918  𝑚 cmap 6702  Xcixp 6752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-ixp 6753
This theorem is referenced by:  ixpssmapg  6782
  Copyright terms: Public domain W3C validator