ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpprc GIF version

Theorem ixpprc 6864
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpprc 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpprc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpfn 6849 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
2 fndm 5419 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
3 vex 2802 . . . . . . 7 𝑓 ∈ V
43dmex 4990 . . . . . 6 dom 𝑓 ∈ V
52, 4eqeltrrdi 2321 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
61, 5syl 14 . . . 4 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
76exlimiv 1644 . . 3 (∃𝑓 𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
87con3i 635 . 2 𝐴 ∈ V → ¬ ∃𝑓 𝑓X𝑥𝐴 𝐵)
9 notm0 3512 . 2 (¬ ∃𝑓 𝑓X𝑥𝐴 𝐵X𝑥𝐴 𝐵 = ∅)
108, 9sylib 122 1 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  c0 3491  dom cdm 4718   Fn wfn 5312  Xcixp 6843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ixp 6844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator