ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpprc GIF version

Theorem ixpprc 6796
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpprc 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpprc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpfn 6781 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
2 fndm 5367 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
3 vex 2774 . . . . . . 7 𝑓 ∈ V
43dmex 4942 . . . . . 6 dom 𝑓 ∈ V
52, 4eqeltrrdi 2296 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
61, 5syl 14 . . . 4 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
76exlimiv 1620 . . 3 (∃𝑓 𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
87con3i 633 . 2 𝐴 ∈ V → ¬ ∃𝑓 𝑓X𝑥𝐴 𝐵)
9 notm0 3480 . 2 (¬ ∃𝑓 𝑓X𝑥𝐴 𝐵X𝑥𝐴 𝐵 = ∅)
108, 9sylib 122 1 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1372  wex 1514  wcel 2175  Vcvv 2771  c0 3459  dom cdm 4673   Fn wfn 5263  Xcixp 6775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-ixp 6776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator