Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixpprc | GIF version |
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.) |
Ref | Expression |
---|---|
ixpprc | ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpfn 6682 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 Fn 𝐴) | |
2 | fndm 5297 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
3 | vex 2733 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
4 | 3 | dmex 4877 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
5 | 2, 4 | eqeltrrdi 2262 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
6 | 1, 5 | syl 14 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
7 | 6 | exlimiv 1591 | . . 3 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
8 | 7 | con3i 627 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) |
9 | notm0 3435 | . 2 ⊢ (¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
10 | 8, 9 | sylib 121 | 1 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 ∅c0 3414 dom cdm 4611 Fn wfn 5193 Xcixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ixp 6677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |