ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpprc GIF version

Theorem ixpprc 6709
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpprc 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpprc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpfn 6694 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
2 fndm 5307 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
3 vex 2738 . . . . . . 7 𝑓 ∈ V
43dmex 4886 . . . . . 6 dom 𝑓 ∈ V
52, 4eqeltrrdi 2267 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
61, 5syl 14 . . . 4 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
76exlimiv 1596 . . 3 (∃𝑓 𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
87con3i 632 . 2 𝐴 ∈ V → ¬ ∃𝑓 𝑓X𝑥𝐴 𝐵)
9 notm0 3441 . 2 (¬ ∃𝑓 𝑓X𝑥𝐴 𝐵X𝑥𝐴 𝐵 = ∅)
108, 9sylib 122 1 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1353  wex 1490  wcel 2146  Vcvv 2735  c0 3420  dom cdm 4620   Fn wfn 5203  Xcixp 6688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-ixp 6689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator