Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixpprc | GIF version |
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.) |
Ref | Expression |
---|---|
ixpprc | ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpfn 6694 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 Fn 𝐴) | |
2 | fndm 5307 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
3 | vex 2738 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
4 | 3 | dmex 4886 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
5 | 2, 4 | eqeltrrdi 2267 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
6 | 1, 5 | syl 14 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
7 | 6 | exlimiv 1596 | . . 3 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
8 | 7 | con3i 632 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) |
9 | notm0 3441 | . 2 ⊢ (¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
10 | 8, 9 | sylib 122 | 1 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ∃wex 1490 ∈ wcel 2146 Vcvv 2735 ∅c0 3420 dom cdm 4620 Fn wfn 5203 Xcixp 6688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ixp 6689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |