![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ixpprc | GIF version |
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.) |
Ref | Expression |
---|---|
ixpprc | ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpfn 6760 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 Fn 𝐴) | |
2 | fndm 5354 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
3 | vex 2763 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
4 | 3 | dmex 4929 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
5 | 2, 4 | eqeltrrdi 2285 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
6 | 1, 5 | syl 14 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
7 | 6 | exlimiv 1609 | . . 3 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
8 | 7 | con3i 633 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) |
9 | notm0 3468 | . 2 ⊢ (¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
10 | 8, 9 | sylib 122 | 1 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 ∅c0 3447 dom cdm 4660 Fn wfn 5250 Xcixp 6754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ixp 6755 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |