ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpprc GIF version

Theorem ixpprc 6685
Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpprc 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpprc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpfn 6670 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
2 fndm 5287 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
3 vex 2729 . . . . . . 7 𝑓 ∈ V
43dmex 4870 . . . . . 6 dom 𝑓 ∈ V
52, 4eqeltrrdi 2258 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
61, 5syl 14 . . . 4 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
76exlimiv 1586 . . 3 (∃𝑓 𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
87con3i 622 . 2 𝐴 ∈ V → ¬ ∃𝑓 𝑓X𝑥𝐴 𝐵)
9 notm0 3429 . 2 (¬ ∃𝑓 𝑓X𝑥𝐴 𝐵X𝑥𝐴 𝐵 = ∅)
108, 9sylib 121 1 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  c0 3409  dom cdm 4604   Fn wfn 5183  Xcixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ixp 6665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator