![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnninf2 | GIF version |
Description: Canonical embedding of suc ω into ℕ∞. (Contributed by BJ, 10-Aug-2024.) |
Ref | Expression |
---|---|
nnnninf2 | ⊢ (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci 4434 | . 2 ⊢ (𝑁 ∈ suc ω → (𝑁 ∈ ω ∨ 𝑁 = ω)) | |
2 | nnnninf 7185 | . . 3 ⊢ (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) | |
3 | iftrue 3562 | . . . . . . 7 ⊢ (𝑖 ∈ ω → if(𝑖 ∈ ω, 1o, ∅) = 1o) | |
4 | 3 | eqcomd 2199 | . . . . . 6 ⊢ (𝑖 ∈ ω → 1o = if(𝑖 ∈ ω, 1o, ∅)) |
5 | eleq2 2257 | . . . . . . . 8 ⊢ (𝑁 = ω → (𝑖 ∈ 𝑁 ↔ 𝑖 ∈ ω)) | |
6 | 5 | ifbid 3578 | . . . . . . 7 ⊢ (𝑁 = ω → if(𝑖 ∈ 𝑁, 1o, ∅) = if(𝑖 ∈ ω, 1o, ∅)) |
7 | 6 | eqcomd 2199 | . . . . . 6 ⊢ (𝑁 = ω → if(𝑖 ∈ ω, 1o, ∅) = if(𝑖 ∈ 𝑁, 1o, ∅)) |
8 | 4, 7 | sylan9eqr 2248 | . . . . 5 ⊢ ((𝑁 = ω ∧ 𝑖 ∈ ω) → 1o = if(𝑖 ∈ 𝑁, 1o, ∅)) |
9 | 8 | mpteq2dva 4119 | . . . 4 ⊢ (𝑁 = ω → (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |
10 | infnninf 7183 | . . . 4 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ | |
11 | 9, 10 | eqeltrrdi 2285 | . . 3 ⊢ (𝑁 = ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
12 | 2, 11 | jaoi 717 | . 2 ⊢ ((𝑁 ∈ ω ∨ 𝑁 = ω) → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
13 | 1, 12 | syl 14 | 1 ⊢ (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∅c0 3446 ifcif 3557 ↦ cmpt 4090 suc csuc 4396 ωcom 4622 1oc1o 6462 ℕ∞xnninf 7178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1o 6469 df-2o 6470 df-map 6704 df-nninf 7179 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |