ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf2 GIF version

Theorem nnnninf2 7156
Description: Canonical embedding of suc ω into . (Contributed by BJ, 10-Aug-2024.)
Assertion
Ref Expression
nnnninf2 (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Distinct variable group:   𝑖,𝑁

Proof of Theorem nnnninf2
StepHypRef Expression
1 elsuci 4421 . 2 (𝑁 ∈ suc ω → (𝑁 ∈ ω ∨ 𝑁 = ω))
2 nnnninf 7155 . . 3 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
3 iftrue 3554 . . . . . . 7 (𝑖 ∈ ω → if(𝑖 ∈ ω, 1o, ∅) = 1o)
43eqcomd 2195 . . . . . 6 (𝑖 ∈ ω → 1o = if(𝑖 ∈ ω, 1o, ∅))
5 eleq2 2253 . . . . . . . 8 (𝑁 = ω → (𝑖𝑁𝑖 ∈ ω))
65ifbid 3570 . . . . . . 7 (𝑁 = ω → if(𝑖𝑁, 1o, ∅) = if(𝑖 ∈ ω, 1o, ∅))
76eqcomd 2195 . . . . . 6 (𝑁 = ω → if(𝑖 ∈ ω, 1o, ∅) = if(𝑖𝑁, 1o, ∅))
84, 7sylan9eqr 2244 . . . . 5 ((𝑁 = ω ∧ 𝑖 ∈ ω) → 1o = if(𝑖𝑁, 1o, ∅))
98mpteq2dva 4108 . . . 4 (𝑁 = ω → (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
10 infnninf 7153 . . . 4 (𝑖 ∈ ω ↦ 1o) ∈ ℕ
119, 10eqeltrrdi 2281 . . 3 (𝑁 = ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
122, 11jaoi 717 . 2 ((𝑁 ∈ ω ∨ 𝑁 = ω) → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
131, 12syl 14 1 (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wcel 2160  c0 3437  ifcif 3549  cmpt 4079  suc csuc 4383  ωcom 4607  1oc1o 6435  xnninf 7149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1o 6442  df-2o 6443  df-map 6677  df-nninf 7150
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator