Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnninf2 | GIF version |
Description: Canonical embedding of suc ω into ℕ∞. (Contributed by BJ, 10-Aug-2024.) |
Ref | Expression |
---|---|
nnnninf2 | ⊢ (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci 4381 | . 2 ⊢ (𝑁 ∈ suc ω → (𝑁 ∈ ω ∨ 𝑁 = ω)) | |
2 | nnnninf 7090 | . . 3 ⊢ (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) | |
3 | iftrue 3525 | . . . . . . 7 ⊢ (𝑖 ∈ ω → if(𝑖 ∈ ω, 1o, ∅) = 1o) | |
4 | 3 | eqcomd 2171 | . . . . . 6 ⊢ (𝑖 ∈ ω → 1o = if(𝑖 ∈ ω, 1o, ∅)) |
5 | eleq2 2230 | . . . . . . . 8 ⊢ (𝑁 = ω → (𝑖 ∈ 𝑁 ↔ 𝑖 ∈ ω)) | |
6 | 5 | ifbid 3541 | . . . . . . 7 ⊢ (𝑁 = ω → if(𝑖 ∈ 𝑁, 1o, ∅) = if(𝑖 ∈ ω, 1o, ∅)) |
7 | 6 | eqcomd 2171 | . . . . . 6 ⊢ (𝑁 = ω → if(𝑖 ∈ ω, 1o, ∅) = if(𝑖 ∈ 𝑁, 1o, ∅)) |
8 | 4, 7 | sylan9eqr 2221 | . . . . 5 ⊢ ((𝑁 = ω ∧ 𝑖 ∈ ω) → 1o = if(𝑖 ∈ 𝑁, 1o, ∅)) |
9 | 8 | mpteq2dva 4072 | . . . 4 ⊢ (𝑁 = ω → (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |
10 | infnninf 7088 | . . . 4 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ | |
11 | 9, 10 | eqeltrrdi 2258 | . . 3 ⊢ (𝑁 = ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
12 | 2, 11 | jaoi 706 | . 2 ⊢ ((𝑁 ∈ ω ∨ 𝑁 = ω) → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
13 | 1, 12 | syl 14 | 1 ⊢ (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∅c0 3409 ifcif 3520 ↦ cmpt 4043 suc csuc 4343 ωcom 4567 1oc1o 6377 ℕ∞xnninf 7084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-2o 6385 df-map 6616 df-nninf 7085 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |