| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnninf2 | GIF version | ||
| Description: Canonical embedding of suc ω into ℕ∞. (Contributed by BJ, 10-Aug-2024.) |
| Ref | Expression |
|---|---|
| nnnninf2 | ⊢ (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuci 4493 | . 2 ⊢ (𝑁 ∈ suc ω → (𝑁 ∈ ω ∨ 𝑁 = ω)) | |
| 2 | nnnninf 7289 | . . 3 ⊢ (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) | |
| 3 | iftrue 3607 | . . . . . . 7 ⊢ (𝑖 ∈ ω → if(𝑖 ∈ ω, 1o, ∅) = 1o) | |
| 4 | 3 | eqcomd 2235 | . . . . . 6 ⊢ (𝑖 ∈ ω → 1o = if(𝑖 ∈ ω, 1o, ∅)) |
| 5 | eleq2 2293 | . . . . . . . 8 ⊢ (𝑁 = ω → (𝑖 ∈ 𝑁 ↔ 𝑖 ∈ ω)) | |
| 6 | 5 | ifbid 3624 | . . . . . . 7 ⊢ (𝑁 = ω → if(𝑖 ∈ 𝑁, 1o, ∅) = if(𝑖 ∈ ω, 1o, ∅)) |
| 7 | 6 | eqcomd 2235 | . . . . . 6 ⊢ (𝑁 = ω → if(𝑖 ∈ ω, 1o, ∅) = if(𝑖 ∈ 𝑁, 1o, ∅)) |
| 8 | 4, 7 | sylan9eqr 2284 | . . . . 5 ⊢ ((𝑁 = ω ∧ 𝑖 ∈ ω) → 1o = if(𝑖 ∈ 𝑁, 1o, ∅)) |
| 9 | 8 | mpteq2dva 4173 | . . . 4 ⊢ (𝑁 = ω → (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |
| 10 | infnninf 7287 | . . . 4 ⊢ (𝑖 ∈ ω ↦ 1o) ∈ ℕ∞ | |
| 11 | 9, 10 | eqeltrrdi 2321 | . . 3 ⊢ (𝑁 = ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
| 12 | 2, 11 | jaoi 721 | . 2 ⊢ ((𝑁 ∈ ω ∨ 𝑁 = ω) → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
| 13 | 1, 12 | syl 14 | 1 ⊢ (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) ∈ ℕ∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∅c0 3491 ifcif 3602 ↦ cmpt 4144 suc csuc 4455 ωcom 4681 1oc1o 6553 ℕ∞xnninf 7282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1o 6560 df-2o 6561 df-map 6795 df-nninf 7283 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |