ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf2 GIF version

Theorem nnnninf2 7091
Description: Canonical embedding of suc ω into . (Contributed by BJ, 10-Aug-2024.)
Assertion
Ref Expression
nnnninf2 (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Distinct variable group:   𝑖,𝑁

Proof of Theorem nnnninf2
StepHypRef Expression
1 elsuci 4381 . 2 (𝑁 ∈ suc ω → (𝑁 ∈ ω ∨ 𝑁 = ω))
2 nnnninf 7090 . . 3 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
3 iftrue 3525 . . . . . . 7 (𝑖 ∈ ω → if(𝑖 ∈ ω, 1o, ∅) = 1o)
43eqcomd 2171 . . . . . 6 (𝑖 ∈ ω → 1o = if(𝑖 ∈ ω, 1o, ∅))
5 eleq2 2230 . . . . . . . 8 (𝑁 = ω → (𝑖𝑁𝑖 ∈ ω))
65ifbid 3541 . . . . . . 7 (𝑁 = ω → if(𝑖𝑁, 1o, ∅) = if(𝑖 ∈ ω, 1o, ∅))
76eqcomd 2171 . . . . . 6 (𝑁 = ω → if(𝑖 ∈ ω, 1o, ∅) = if(𝑖𝑁, 1o, ∅))
84, 7sylan9eqr 2221 . . . . 5 ((𝑁 = ω ∧ 𝑖 ∈ ω) → 1o = if(𝑖𝑁, 1o, ∅))
98mpteq2dva 4072 . . . 4 (𝑁 = ω → (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
10 infnninf 7088 . . . 4 (𝑖 ∈ ω ↦ 1o) ∈ ℕ
119, 10eqeltrrdi 2258 . . 3 (𝑁 = ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
122, 11jaoi 706 . 2 ((𝑁 ∈ ω ∨ 𝑁 = ω) → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
131, 12syl 14 1 (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698   = wceq 1343  wcel 2136  c0 3409  ifcif 3520  cmpt 4043  suc csuc 4343  ωcom 4567  1oc1o 6377  xnninf 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-map 6616  df-nninf 7085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator