ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf2 GIF version

Theorem nnnninf2 7211
Description: Canonical embedding of suc ω into . (Contributed by BJ, 10-Aug-2024.)
Assertion
Ref Expression
nnnninf2 (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Distinct variable group:   𝑖,𝑁

Proof of Theorem nnnninf2
StepHypRef Expression
1 elsuci 4448 . 2 (𝑁 ∈ suc ω → (𝑁 ∈ ω ∨ 𝑁 = ω))
2 nnnninf 7210 . . 3 (𝑁 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
3 iftrue 3575 . . . . . . 7 (𝑖 ∈ ω → if(𝑖 ∈ ω, 1o, ∅) = 1o)
43eqcomd 2210 . . . . . 6 (𝑖 ∈ ω → 1o = if(𝑖 ∈ ω, 1o, ∅))
5 eleq2 2268 . . . . . . . 8 (𝑁 = ω → (𝑖𝑁𝑖 ∈ ω))
65ifbid 3591 . . . . . . 7 (𝑁 = ω → if(𝑖𝑁, 1o, ∅) = if(𝑖 ∈ ω, 1o, ∅))
76eqcomd 2210 . . . . . 6 (𝑁 = ω → if(𝑖 ∈ ω, 1o, ∅) = if(𝑖𝑁, 1o, ∅))
84, 7sylan9eqr 2259 . . . . 5 ((𝑁 = ω ∧ 𝑖 ∈ ω) → 1o = if(𝑖𝑁, 1o, ∅))
98mpteq2dva 4133 . . . 4 (𝑁 = ω → (𝑖 ∈ ω ↦ 1o) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
10 infnninf 7208 . . . 4 (𝑖 ∈ ω ↦ 1o) ∈ ℕ
119, 10eqeltrrdi 2296 . . 3 (𝑁 = ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
122, 11jaoi 717 . 2 ((𝑁 ∈ ω ∨ 𝑁 = ω) → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
131, 12syl 14 1 (𝑁 ∈ suc ω → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1372  wcel 2175  c0 3459  ifcif 3570  cmpt 4104  suc csuc 4410  ωcom 4636  1oc1o 6485  xnninf 7203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1o 6492  df-2o 6493  df-map 6727  df-nninf 7204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator