ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xqltnle GIF version

Theorem xqltnle 10447
Description: "Less than" expressed in terms of "less than or equal to", for extended numbers which are rational or +∞. We have not yet had enough usage of such numbers to warrant fully developing the concept, as in 0* or *, so for now we just have a handful of theorems for what we need. (Contributed by Jim Kingdon, 5-Jun-2025.)
Assertion
Ref Expression
xqltnle (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem xqltnle
StepHypRef Expression
1 qltnle 10423 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
21adantll 476 . . 3 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
3 simplr 528 . . . . . . 7 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 ∈ ℚ)
4 qre 9781 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
53, 4syl 14 . . . . . 6 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
65ltpnfd 9938 . . . . 5 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 < +∞)
7 simpr 110 . . . . 5 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐵 = +∞)
86, 7breqtrrd 4087 . . . 4 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
95renepnfd 8158 . . . . . . 7 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 ≠ +∞)
109neneqd 2399 . . . . . 6 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → ¬ 𝐴 = +∞)
115rexrd 8157 . . . . . . 7 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
12 xgepnf 9973 . . . . . . 7 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))
1311, 12syl 14 . . . . . 6 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → (+∞ ≤ 𝐴𝐴 = +∞))
1410, 13mtbird 675 . . . . 5 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → ¬ +∞ ≤ 𝐴)
157, 14eqnbrtrd 4077 . . . 4 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → ¬ 𝐵𝐴)
168, 152thd 175 . . 3 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
17 simplr 528 . . 3 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) → (𝐵 ∈ ℚ ∨ 𝐵 = +∞))
182, 16, 17mpjaodan 800 . 2 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
19 simpr 110 . . . 4 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
20 qre 9781 . . . . . . . . 9 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
2120rexrd 8157 . . . . . . . 8 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ*)
22 pnfxr 8160 . . . . . . . . 9 +∞ ∈ ℝ*
23 eleq1 2270 . . . . . . . . 9 (𝐵 = +∞ → (𝐵 ∈ ℝ* ↔ +∞ ∈ ℝ*))
2422, 23mpbiri 168 . . . . . . . 8 (𝐵 = +∞ → 𝐵 ∈ ℝ*)
2521, 24jaoi 718 . . . . . . 7 ((𝐵 ∈ ℚ ∨ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
2625adantl 277 . . . . . 6 (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → 𝐵 ∈ ℝ*)
27 pnfnlt 9944 . . . . . 6 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
2826, 27syl 14 . . . . 5 (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → ¬ +∞ < 𝐵)
2928adantr 276 . . . 4 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → ¬ +∞ < 𝐵)
3019, 29eqnbrtrd 4077 . . 3 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐵)
31 pnfge 9946 . . . . . . 7 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
3226, 31syl 14 . . . . . 6 (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → 𝐵 ≤ +∞)
3332adantr 276 . . . . 5 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞)
3433, 19breqtrrd 4087 . . . 4 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → 𝐵𝐴)
3534notnotd 631 . . 3 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → ¬ ¬ 𝐵𝐴)
3630, 352falsed 704 . 2 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
37 simpl 109 . 2 (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 ∈ ℚ ∨ 𝐴 = +∞))
3818, 36, 37mpjaodan 800 1 (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2178   class class class wbr 4059  cr 7959  +∞cpnf 8139  *cxr 8141   < clt 8142  cle 8143  cq 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-n0 9331  df-z 9408  df-q 9776  df-rp 9811
This theorem is referenced by:  pcadd2  12779
  Copyright terms: Public domain W3C validator