ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xqltnle GIF version

Theorem xqltnle 10412
Description: "Less than" expressed in terms of "less than or equal to", for extended numbers which are rational or +∞. We have not yet had enough usage of such numbers to warrant fully developing the concept, as in 0* or *, so for now we just have a handful of theorems for what we need. (Contributed by Jim Kingdon, 5-Jun-2025.)
Assertion
Ref Expression
xqltnle (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem xqltnle
StepHypRef Expression
1 qltnle 10388 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
21adantll 476 . . 3 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
3 simplr 528 . . . . . . 7 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 ∈ ℚ)
4 qre 9748 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
53, 4syl 14 . . . . . 6 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
65ltpnfd 9905 . . . . 5 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 < +∞)
7 simpr 110 . . . . 5 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐵 = +∞)
86, 7breqtrrd 4073 . . . 4 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
95renepnfd 8125 . . . . . . 7 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 ≠ +∞)
109neneqd 2397 . . . . . 6 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → ¬ 𝐴 = +∞)
115rexrd 8124 . . . . . . 7 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
12 xgepnf 9940 . . . . . . 7 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴𝐴 = +∞))
1311, 12syl 14 . . . . . 6 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → (+∞ ≤ 𝐴𝐴 = +∞))
1410, 13mtbird 675 . . . . 5 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → ¬ +∞ ≤ 𝐴)
157, 14eqnbrtrd 4063 . . . 4 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → ¬ 𝐵𝐴)
168, 152thd 175 . . 3 (((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
17 simplr 528 . . 3 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) → (𝐵 ∈ ℚ ∨ 𝐵 = +∞))
182, 16, 17mpjaodan 800 . 2 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
19 simpr 110 . . . 4 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
20 qre 9748 . . . . . . . . 9 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
2120rexrd 8124 . . . . . . . 8 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ*)
22 pnfxr 8127 . . . . . . . . 9 +∞ ∈ ℝ*
23 eleq1 2268 . . . . . . . . 9 (𝐵 = +∞ → (𝐵 ∈ ℝ* ↔ +∞ ∈ ℝ*))
2422, 23mpbiri 168 . . . . . . . 8 (𝐵 = +∞ → 𝐵 ∈ ℝ*)
2521, 24jaoi 718 . . . . . . 7 ((𝐵 ∈ ℚ ∨ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
2625adantl 277 . . . . . 6 (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → 𝐵 ∈ ℝ*)
27 pnfnlt 9911 . . . . . 6 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
2826, 27syl 14 . . . . 5 (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → ¬ +∞ < 𝐵)
2928adantr 276 . . . 4 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → ¬ +∞ < 𝐵)
3019, 29eqnbrtrd 4063 . . 3 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐵)
31 pnfge 9913 . . . . . . 7 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
3226, 31syl 14 . . . . . 6 (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → 𝐵 ≤ +∞)
3332adantr 276 . . . . 5 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞)
3433, 19breqtrrd 4073 . . . 4 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → 𝐵𝐴)
3534notnotd 631 . . 3 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → ¬ ¬ 𝐵𝐴)
3630, 352falsed 704 . 2 ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
37 simpl 109 . 2 (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 ∈ ℚ ∨ 𝐴 = +∞))
3818, 36, 37mpjaodan 800 1 (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176   class class class wbr 4045  cr 7926  +∞cpnf 8106  *cxr 8108   < clt 8109  cle 8110  cq 9742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-n0 9298  df-z 9375  df-q 9743  df-rp 9778
This theorem is referenced by:  pcadd2  12697
  Copyright terms: Public domain W3C validator