Proof of Theorem xqltnle
| Step | Hyp | Ref
| Expression |
| 1 | | qltnle 10333 |
. . . 4
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 2 | 1 | adantll 476 |
. . 3
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 ∈ ℚ) →
(𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 3 | | simplr 528 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → 𝐴 ∈
ℚ) |
| 4 | | qre 9699 |
. . . . . . 7
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℝ) |
| 5 | 3, 4 | syl 14 |
. . . . . 6
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → 𝐴 ∈
ℝ) |
| 6 | 5 | ltpnfd 9856 |
. . . . 5
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → 𝐴 < +∞) |
| 7 | | simpr 110 |
. . . . 5
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → 𝐵 = +∞) |
| 8 | 6, 7 | breqtrrd 4061 |
. . . 4
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → 𝐴 < 𝐵) |
| 9 | 5 | renepnfd 8077 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → 𝐴 ≠ +∞) |
| 10 | 9 | neneqd 2388 |
. . . . . 6
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → ¬
𝐴 =
+∞) |
| 11 | 5 | rexrd 8076 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → 𝐴 ∈
ℝ*) |
| 12 | | xgepnf 9891 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ (+∞ ≤ 𝐴
↔ 𝐴 =
+∞)) |
| 13 | 11, 12 | syl 14 |
. . . . . 6
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) →
(+∞ ≤ 𝐴 ↔
𝐴 =
+∞)) |
| 14 | 10, 13 | mtbird 674 |
. . . . 5
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → ¬
+∞ ≤ 𝐴) |
| 15 | 7, 14 | eqnbrtrd 4051 |
. . . 4
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → ¬
𝐵 ≤ 𝐴) |
| 16 | 8, 15 | 2thd 175 |
. . 3
⊢
(((((𝐴 ∈
ℚ ∨ 𝐴 = +∞)
∧ (𝐵 ∈ ℚ
∨ 𝐵 = +∞)) ∧
𝐴 ∈ ℚ) ∧
𝐵 = +∞) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 17 | | simplr 528 |
. . 3
⊢ ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) → (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) |
| 18 | 2, 16, 17 | mpjaodan 799 |
. 2
⊢ ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 19 | | simpr 110 |
. . . 4
⊢ ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → 𝐴 = +∞) |
| 20 | | qre 9699 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℝ) |
| 21 | 20 | rexrd 8076 |
. . . . . . . 8
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℝ*) |
| 22 | | pnfxr 8079 |
. . . . . . . . 9
⊢ +∞
∈ ℝ* |
| 23 | | eleq1 2259 |
. . . . . . . . 9
⊢ (𝐵 = +∞ → (𝐵 ∈ ℝ*
↔ +∞ ∈ ℝ*)) |
| 24 | 22, 23 | mpbiri 168 |
. . . . . . . 8
⊢ (𝐵 = +∞ → 𝐵 ∈
ℝ*) |
| 25 | 21, 24 | jaoi 717 |
. . . . . . 7
⊢ ((𝐵 ∈ ℚ ∨ 𝐵 = +∞) → 𝐵 ∈
ℝ*) |
| 26 | 25 | adantl 277 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → 𝐵 ∈
ℝ*) |
| 27 | | pnfnlt 9862 |
. . . . . 6
⊢ (𝐵 ∈ ℝ*
→ ¬ +∞ < 𝐵) |
| 28 | 26, 27 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → ¬
+∞ < 𝐵) |
| 29 | 28 | adantr 276 |
. . . 4
⊢ ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → ¬
+∞ < 𝐵) |
| 30 | 19, 29 | eqnbrtrd 4051 |
. . 3
⊢ ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐵) |
| 31 | | pnfge 9864 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ 𝐵 ≤
+∞) |
| 32 | 26, 31 | syl 14 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → 𝐵 ≤ +∞) |
| 33 | 32 | adantr 276 |
. . . . 5
⊢ ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞) |
| 34 | 33, 19 | breqtrrd 4061 |
. . . 4
⊢ ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → 𝐵 ≤ 𝐴) |
| 35 | 34 | notnotd 631 |
. . 3
⊢ ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → ¬ ¬
𝐵 ≤ 𝐴) |
| 36 | 30, 35 | 2falsed 703 |
. 2
⊢ ((((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) ∧ 𝐴 = +∞) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 37 | | simpl 109 |
. 2
⊢ (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 ∈ ℚ ∨ 𝐴 = +∞)) |
| 38 | 18, 36, 37 | mpjaodan 799 |
1
⊢ (((𝐴 ∈ ℚ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℚ ∨ 𝐵 = +∞)) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |