![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2id | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr2id.1 | ⊢ 𝐴 = 𝐵 |
eqtr2id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eqtr2id | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2id.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | eqtr2id.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | eqtrid 2238 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2199 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqtr3di 2241 opeqsn 4281 dcextest 4613 relop 4812 funopg 5288 funcnvres 5327 mapsnconst 6748 snexxph 7009 apreap 8606 recextlem1 8670 nn0supp 9292 intqfrac2 10390 hashprg 10879 hashfacen 10907 explecnv 11648 grp1inv 13179 rnrhmsubrg 13748 rerestcntop 14718 binom4 15111 |
Copyright terms: Public domain | W3C validator |