| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2id.1 | ⊢ 𝐴 = 𝐵 |
| eqtr2id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eqtr2id | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2id.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr2id.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eqtrid 2251 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3 | eqcomd 2212 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: eqtr3di 2254 opeqsn 4304 dcextest 4636 relop 4835 funopg 5313 funcnvres 5355 mapsnconst 6793 snexxph 7066 apreap 8675 recextlem1 8739 nn0supp 9362 intqfrac2 10481 hashprg 10970 hashfacen 10998 ccatrid 11081 explecnv 11886 grp1inv 13509 rnrhmsubrg 14084 rerestcntop 15100 rerest 15102 mpomulcn 15108 binom4 15521 |
| Copyright terms: Public domain | W3C validator |