| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2id.1 | ⊢ 𝐴 = 𝐵 |
| eqtr2id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eqtr2id | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2id.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr2id.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eqtrid 2274 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3 | eqcomd 2235 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqtr3di 2277 opeqsn 4338 dcextest 4672 relop 4871 funopg 5351 funcnvres 5393 mapsnconst 6839 snexxph 7113 apreap 8730 recextlem1 8794 nn0supp 9417 intqfrac2 10536 hashprg 11025 hashfacen 11053 ccatrid 11137 explecnv 12011 grp1inv 13635 rnrhmsubrg 14210 rerestcntop 15226 rerest 15228 mpomulcn 15234 binom4 15647 |
| Copyright terms: Public domain | W3C validator |