ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr2id GIF version

Theorem eqtr2id 2223
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
eqtr2id.1 𝐴 = 𝐵
eqtr2id.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
eqtr2id (𝜑𝐶 = 𝐴)

Proof of Theorem eqtr2id
StepHypRef Expression
1 eqtr2id.1 . . 3 𝐴 = 𝐵
2 eqtr2id.2 . . 3 (𝜑𝐵 = 𝐶)
31, 2eqtrid 2222 . 2 (𝜑𝐴 = 𝐶)
43eqcomd 2183 1 (𝜑𝐶 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170
This theorem is referenced by:  eqtr3di  2225  opeqsn  4254  dcextest  4582  relop  4779  funopg  5252  funcnvres  5291  mapsnconst  6696  snexxph  6951  apreap  8546  recextlem1  8610  nn0supp  9230  intqfrac2  10321  hashprg  10790  hashfacen  10818  explecnv  11515  grp1inv  12982  rerestcntop  14135  binom4  14482
  Copyright terms: Public domain W3C validator