| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2id.1 | ⊢ 𝐴 = 𝐵 |
| eqtr2id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eqtr2id | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2id.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr2id.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eqtrid 2241 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3 | eqcomd 2202 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqtr3di 2244 opeqsn 4286 dcextest 4618 relop 4817 funopg 5293 funcnvres 5332 mapsnconst 6762 snexxph 7025 apreap 8631 recextlem1 8695 nn0supp 9318 intqfrac2 10428 hashprg 10917 hashfacen 10945 explecnv 11687 grp1inv 13309 rnrhmsubrg 13884 rerestcntop 14878 rerest 14880 mpomulcn 14886 binom4 15299 |
| Copyright terms: Public domain | W3C validator |