ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr2id GIF version

Theorem eqtr2id 2242
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
eqtr2id.1 𝐴 = 𝐵
eqtr2id.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
eqtr2id (𝜑𝐶 = 𝐴)

Proof of Theorem eqtr2id
StepHypRef Expression
1 eqtr2id.1 . . 3 𝐴 = 𝐵
2 eqtr2id.2 . . 3 (𝜑𝐵 = 𝐶)
31, 2eqtrid 2241 . 2 (𝜑𝐴 = 𝐶)
43eqcomd 2202 1 (𝜑𝐶 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  eqtr3di  2244  opeqsn  4285  dcextest  4617  relop  4816  funopg  5292  funcnvres  5331  mapsnconst  6753  snexxph  7016  apreap  8614  recextlem1  8678  nn0supp  9301  intqfrac2  10411  hashprg  10900  hashfacen  10928  explecnv  11670  grp1inv  13239  rnrhmsubrg  13808  rerestcntop  14794  rerest  14796  mpomulcn  14802  binom4  15215
  Copyright terms: Public domain W3C validator