Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr2id | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr2id.1 | ⊢ 𝐴 = 𝐵 |
eqtr2id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eqtr2id | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2id.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | eqtr2id.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | syl5eq 2210 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2171 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: eqtr3di 2213 opeqsn 4229 dcextest 4557 relop 4753 funopg 5221 funcnvres 5260 mapsnconst 6656 snexxph 6911 apreap 8481 recextlem1 8544 nn0supp 9162 intqfrac2 10250 hashprg 10717 hashfacen 10745 explecnv 11442 rerestcntop 13150 binom4 13497 |
Copyright terms: Public domain | W3C validator |