![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2id | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr2id.1 | ⊢ 𝐴 = 𝐵 |
eqtr2id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eqtr2id | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2id.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | eqtr2id.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | eqtrid 2238 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2199 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqtr3di 2241 opeqsn 4282 dcextest 4614 relop 4813 funopg 5289 funcnvres 5328 mapsnconst 6750 snexxph 7011 apreap 8608 recextlem1 8672 nn0supp 9295 intqfrac2 10393 hashprg 10882 hashfacen 10910 explecnv 11651 grp1inv 13182 rnrhmsubrg 13751 rerestcntop 14737 rerest 14739 mpomulcn 14745 binom4 15152 |
Copyright terms: Public domain | W3C validator |