| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2id.1 |
|
| eqtr2id.2 |
|
| Ref | Expression |
|---|---|
| eqtr2id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2id.1 |
. . 3
| |
| 2 | eqtr2id.2 |
. . 3
| |
| 3 | 1, 2 | eqtrid 2250 |
. 2
|
| 4 | 3 | eqcomd 2211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: eqtr3di 2253 opeqsn 4297 dcextest 4629 relop 4828 funopg 5305 funcnvres 5347 mapsnconst 6781 snexxph 7052 apreap 8660 recextlem1 8724 nn0supp 9347 intqfrac2 10464 hashprg 10953 hashfacen 10981 ccatrid 11063 explecnv 11816 grp1inv 13439 rnrhmsubrg 14014 rerestcntop 15030 rerest 15032 mpomulcn 15038 binom4 15451 |
| Copyright terms: Public domain | W3C validator |