![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2id | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr2id.1 |
![]() ![]() ![]() ![]() |
eqtr2id.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr2id |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2id.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | eqtr2id.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtrid 2234 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | eqcomd 2195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 |
This theorem is referenced by: eqtr3di 2237 opeqsn 4270 dcextest 4598 relop 4795 funopg 5269 funcnvres 5308 mapsnconst 6720 snexxph 6979 apreap 8574 recextlem1 8638 nn0supp 9258 intqfrac2 10350 hashprg 10820 hashfacen 10848 explecnv 11545 grp1inv 13051 rerestcntop 14507 binom4 14854 |
Copyright terms: Public domain | W3C validator |