| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2id.1 |
|
| eqtr2id.2 |
|
| Ref | Expression |
|---|---|
| eqtr2id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2id.1 |
. . 3
| |
| 2 | eqtr2id.2 |
. . 3
| |
| 3 | 1, 2 | eqtrid 2241 |
. 2
|
| 4 | 3 | eqcomd 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqtr3di 2244 opeqsn 4286 dcextest 4618 relop 4817 funopg 5293 funcnvres 5332 mapsnconst 6762 snexxph 7025 apreap 8633 recextlem1 8697 nn0supp 9320 intqfrac2 10430 hashprg 10919 hashfacen 10947 explecnv 11689 grp1inv 13311 rnrhmsubrg 13886 rerestcntop 14902 rerest 14904 mpomulcn 14910 binom4 15323 |
| Copyright terms: Public domain | W3C validator |