ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr2id Unicode version

Theorem eqtr2id 2242
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
eqtr2id.1  |-  A  =  B
eqtr2id.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
eqtr2id  |-  ( ph  ->  C  =  A )

Proof of Theorem eqtr2id
StepHypRef Expression
1 eqtr2id.1 . . 3  |-  A  =  B
2 eqtr2id.2 . . 3  |-  ( ph  ->  B  =  C )
31, 2eqtrid 2241 . 2  |-  ( ph  ->  A  =  C )
43eqcomd 2202 1  |-  ( ph  ->  C  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  eqtr3di  2244  opeqsn  4286  dcextest  4618  relop  4817  funopg  5293  funcnvres  5332  mapsnconst  6762  snexxph  7025  apreap  8633  recextlem1  8697  nn0supp  9320  intqfrac2  10430  hashprg  10919  hashfacen  10947  explecnv  11689  grp1inv  13311  rnrhmsubrg  13886  rerestcntop  14902  rerest  14904  mpomulcn  14910  binom4  15323
  Copyright terms: Public domain W3C validator