| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2id.1 |
|
| eqtr2id.2 |
|
| Ref | Expression |
|---|---|
| eqtr2id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2id.1 |
. . 3
| |
| 2 | eqtr2id.2 |
. . 3
| |
| 3 | 1, 2 | eqtrid 2241 |
. 2
|
| 4 | 3 | eqcomd 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqtr3di 2244 opeqsn 4285 dcextest 4617 relop 4816 funopg 5292 funcnvres 5331 mapsnconst 6753 snexxph 7016 apreap 8614 recextlem1 8678 nn0supp 9301 intqfrac2 10411 hashprg 10900 hashfacen 10928 explecnv 11670 grp1inv 13239 rnrhmsubrg 13808 rerestcntop 14794 rerest 14796 mpomulcn 14802 binom4 15215 |
| Copyright terms: Public domain | W3C validator |