| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2id.1 |
|
| eqtr2id.2 |
|
| Ref | Expression |
|---|---|
| eqtr2id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2id.1 |
. . 3
| |
| 2 | eqtr2id.2 |
. . 3
| |
| 3 | 1, 2 | eqtrid 2274 |
. 2
|
| 4 | 3 | eqcomd 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqtr3di 2277 opeqsn 4339 dcextest 4673 relop 4872 funopg 5352 funcnvres 5394 mapsnconst 6841 snexxph 7117 apreap 8734 recextlem1 8798 nn0supp 9421 intqfrac2 10541 hashprg 11030 hashfacen 11058 ccatrid 11142 explecnv 12016 grp1inv 13640 rnrhmsubrg 14216 rerestcntop 15232 rerest 15234 mpomulcn 15240 binom4 15653 wlkvtxedg 16074 |
| Copyright terms: Public domain | W3C validator |