Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr2id | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr2id.1 | |
eqtr2id.2 |
Ref | Expression |
---|---|
eqtr2id |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2id.1 | . . 3 | |
2 | eqtr2id.2 | . . 3 | |
3 | 1, 2 | eqtrid 2215 | . 2 |
4 | 3 | eqcomd 2176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: eqtr3di 2218 opeqsn 4237 dcextest 4565 relop 4761 funopg 5232 funcnvres 5271 mapsnconst 6672 snexxph 6927 apreap 8506 recextlem1 8569 nn0supp 9187 intqfrac2 10275 hashprg 10743 hashfacen 10771 explecnv 11468 rerestcntop 13344 binom4 13691 |
Copyright terms: Public domain | W3C validator |