| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2id | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr2id.1 |
|
| eqtr2id.2 |
|
| Ref | Expression |
|---|---|
| eqtr2id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2id.1 |
. . 3
| |
| 2 | eqtr2id.2 |
. . 3
| |
| 3 | 1, 2 | eqtrid 2252 |
. 2
|
| 4 | 3 | eqcomd 2213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eqtr3di 2255 opeqsn 4315 dcextest 4647 relop 4846 funopg 5324 funcnvres 5366 mapsnconst 6804 snexxph 7078 apreap 8695 recextlem1 8759 nn0supp 9382 intqfrac2 10501 hashprg 10990 hashfacen 11018 ccatrid 11101 explecnv 11931 grp1inv 13554 rnrhmsubrg 14129 rerestcntop 15145 rerest 15147 mpomulcn 15153 binom4 15566 |
| Copyright terms: Public domain | W3C validator |