ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvres GIF version

Theorem funcnvres 5121
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
funcnvres (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))

Proof of Theorem funcnvres
StepHypRef Expression
1 df-ima 4480 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
2 df-rn 4478 . . . 4 ran (𝐹𝐴) = dom (𝐹𝐴)
31, 2eqtri 2115 . . 3 (𝐹𝐴) = dom (𝐹𝐴)
43reseq2i 4742 . 2 (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ dom (𝐹𝐴))
5 resss 4769 . . . 4 (𝐹𝐴) ⊆ 𝐹
6 cnvss 4640 . . . 4 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
75, 6ax-mp 7 . . 3 (𝐹𝐴) ⊆ 𝐹
8 funssres 5090 . . 3 ((Fun 𝐹(𝐹𝐴) ⊆ 𝐹) → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴))
97, 8mpan2 417 . 2 (Fun 𝐹 → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴))
104, 9syl5req 2140 1 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1296  wss 3013  ccnv 4466  dom cdm 4467  ran crn 4468  cres 4469  cima 4470  Fun wfun 5043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-fun 5051
This theorem is referenced by:  cnvresid  5122  funcnvres2  5123  f1orescnv  5304  f1imacnv  5305  sbthlemi4  6749
  Copyright terms: Public domain W3C validator