ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvres GIF version

Theorem funcnvres 5328
Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
funcnvres (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))

Proof of Theorem funcnvres
StepHypRef Expression
1 df-ima 4673 . . . 4 (𝐹𝐴) = ran (𝐹𝐴)
2 df-rn 4671 . . . 4 ran (𝐹𝐴) = dom (𝐹𝐴)
31, 2eqtri 2214 . . 3 (𝐹𝐴) = dom (𝐹𝐴)
43reseq2i 4940 . 2 (𝐹 ↾ (𝐹𝐴)) = (𝐹 ↾ dom (𝐹𝐴))
5 resss 4967 . . . 4 (𝐹𝐴) ⊆ 𝐹
6 cnvss 4836 . . . 4 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
75, 6ax-mp 5 . . 3 (𝐹𝐴) ⊆ 𝐹
8 funssres 5297 . . 3 ((Fun 𝐹(𝐹𝐴) ⊆ 𝐹) → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴))
97, 8mpan2 425 . 2 (Fun 𝐹 → (𝐹 ↾ dom (𝐹𝐴)) = (𝐹𝐴))
104, 9eqtr2id 2239 1 (Fun 𝐹(𝐹𝐴) = (𝐹 ↾ (𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3154  ccnv 4659  dom cdm 4660  ran crn 4661  cres 4662  cima 4663  Fun wfun 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257
This theorem is referenced by:  cnvresid  5329  funcnvres2  5330  f1orescnv  5517  f1imacnv  5518  sbthlemi4  7021  hmeores  14494
  Copyright terms: Public domain W3C validator