| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funcnvres | GIF version | ||
| Description: The converse of a restricted function. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| funcnvres | ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4692 | . . . 4 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 2 | df-rn 4690 | . . . 4 ⊢ ran (𝐹 ↾ 𝐴) = dom ◡(𝐹 ↾ 𝐴) | |
| 3 | 1, 2 | eqtri 2227 | . . 3 ⊢ (𝐹 “ 𝐴) = dom ◡(𝐹 ↾ 𝐴) |
| 4 | 3 | reseq2i 4961 | . 2 ⊢ (◡𝐹 ↾ (𝐹 “ 𝐴)) = (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) |
| 5 | resss 4988 | . . . 4 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 6 | cnvss 4855 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 |
| 8 | funssres 5318 | . . 3 ⊢ ((Fun ◡𝐹 ∧ ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) → (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) = ◡(𝐹 ↾ 𝐴)) | |
| 9 | 7, 8 | mpan2 425 | . 2 ⊢ (Fun ◡𝐹 → (◡𝐹 ↾ dom ◡(𝐹 ↾ 𝐴)) = ◡(𝐹 ↾ 𝐴)) |
| 10 | 4, 9 | eqtr2id 2252 | 1 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝐴) = (◡𝐹 ↾ (𝐹 “ 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3167 ◡ccnv 4678 dom cdm 4679 ran crn 4680 ↾ cres 4681 “ cima 4682 Fun wfun 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-fun 5278 |
| This theorem is referenced by: cnvresid 5353 funcnvres2 5354 f1orescnv 5545 f1imacnv 5546 sbthlemi4 7069 hmeores 14831 |
| Copyright terms: Public domain | W3C validator |