ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeqsn GIF version

Theorem opeqsn 4112
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
opeqsn.1 𝐴 ∈ V
opeqsn.2 𝐵 ∈ V
opeqsn.3 𝐶 ∈ V
Assertion
Ref Expression
opeqsn (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵𝐶 = {𝐴}))

Proof of Theorem opeqsn
StepHypRef Expression
1 opeqsn.1 . . . 4 𝐴 ∈ V
2 opeqsn.2 . . . 4 𝐵 ∈ V
31, 2dfop 3651 . . 3 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43eqeq1i 2107 . 2 (⟨𝐴, 𝐵⟩ = {𝐶} ↔ {{𝐴}, {𝐴, 𝐵}} = {𝐶})
51snex 4049 . . 3 {𝐴} ∈ V
6 prexg 4071 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
71, 2, 6mp2an 420 . . 3 {𝐴, 𝐵} ∈ V
8 opeqsn.3 . . 3 𝐶 ∈ V
95, 7, 8preqsn 3649 . 2 ({{𝐴}, {𝐴, 𝐵}} = {𝐶} ↔ ({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶))
10 eqcom 2102 . . . . 5 ({𝐴} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐴})
111, 2, 1preqsn 3649 . . . . 5 ({𝐴, 𝐵} = {𝐴} ↔ (𝐴 = 𝐵𝐵 = 𝐴))
12 eqcom 2102 . . . . . . 7 (𝐵 = 𝐴𝐴 = 𝐵)
1312anbi2i 448 . . . . . 6 ((𝐴 = 𝐵𝐵 = 𝐴) ↔ (𝐴 = 𝐵𝐴 = 𝐵))
14 anidm 391 . . . . . 6 ((𝐴 = 𝐵𝐴 = 𝐵) ↔ 𝐴 = 𝐵)
1513, 14bitri 183 . . . . 5 ((𝐴 = 𝐵𝐵 = 𝐴) ↔ 𝐴 = 𝐵)
1610, 11, 153bitri 205 . . . 4 ({𝐴} = {𝐴, 𝐵} ↔ 𝐴 = 𝐵)
1716anbi1i 449 . . 3 (({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ {𝐴, 𝐵} = 𝐶))
18 dfsn2 3488 . . . . . . 7 {𝐴} = {𝐴, 𝐴}
19 preq2 3548 . . . . . . 7 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
2018, 19syl5req 2145 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
2120eqeq1d 2108 . . . . 5 (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ {𝐴} = 𝐶))
22 eqcom 2102 . . . . 5 ({𝐴} = 𝐶𝐶 = {𝐴})
2321, 22syl6bb 195 . . . 4 (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶𝐶 = {𝐴}))
2423pm5.32i 445 . . 3 ((𝐴 = 𝐵 ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵𝐶 = {𝐴}))
2517, 24bitri 183 . 2 (({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵𝐶 = {𝐴}))
264, 9, 253bitri 205 1 (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵𝐶 = {𝐴}))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1299  wcel 1448  Vcvv 2641  {csn 3474  {cpr 3475  cop 3477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483
This theorem is referenced by:  relop  4627
  Copyright terms: Public domain W3C validator