Proof of Theorem opeqsn
Step | Hyp | Ref
| Expression |
1 | | opeqsn.1 |
. . . 4
⊢ 𝐴 ∈ V |
2 | | opeqsn.2 |
. . . 4
⊢ 𝐵 ∈ V |
3 | 1, 2 | dfop 3757 |
. . 3
⊢
〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
4 | 3 | eqeq1i 2173 |
. 2
⊢
(〈𝐴, 𝐵〉 = {𝐶} ↔ {{𝐴}, {𝐴, 𝐵}} = {𝐶}) |
5 | 1 | snex 4164 |
. . 3
⊢ {𝐴} ∈ V |
6 | | prexg 4189 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) |
7 | 1, 2, 6 | mp2an 423 |
. . 3
⊢ {𝐴, 𝐵} ∈ V |
8 | | opeqsn.3 |
. . 3
⊢ 𝐶 ∈ V |
9 | 5, 7, 8 | preqsn 3755 |
. 2
⊢ ({{𝐴}, {𝐴, 𝐵}} = {𝐶} ↔ ({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶)) |
10 | | eqcom 2167 |
. . . . 5
⊢ ({𝐴} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐴}) |
11 | 1, 2, 1 | preqsn 3755 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐴} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐴)) |
12 | | eqcom 2167 |
. . . . . . 7
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
13 | 12 | anbi2i 453 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐴 = 𝐵)) |
14 | | anidm 394 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵) |
15 | 13, 14 | bitri 183 |
. . . . 5
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐴) ↔ 𝐴 = 𝐵) |
16 | 10, 11, 15 | 3bitri 205 |
. . . 4
⊢ ({𝐴} = {𝐴, 𝐵} ↔ 𝐴 = 𝐵) |
17 | 16 | anbi1i 454 |
. . 3
⊢ (({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ {𝐴, 𝐵} = 𝐶)) |
18 | | dfsn2 3590 |
. . . . . . 7
⊢ {𝐴} = {𝐴, 𝐴} |
19 | | preq2 3654 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) |
20 | 18, 19 | eqtr2id 2212 |
. . . . . 6
⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
21 | 20 | eqeq1d 2174 |
. . . . 5
⊢ (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ {𝐴} = 𝐶)) |
22 | | eqcom 2167 |
. . . . 5
⊢ ({𝐴} = 𝐶 ↔ 𝐶 = {𝐴}) |
23 | 21, 22 | bitrdi 195 |
. . . 4
⊢ (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ 𝐶 = {𝐴})) |
24 | 23 | pm5.32i 450 |
. . 3
⊢ ((𝐴 = 𝐵 ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
25 | 17, 24 | bitri 183 |
. 2
⊢ (({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
26 | 4, 9, 25 | 3bitri 205 |
1
⊢
(〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |