Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapsnconst | GIF version |
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
mapsnconst | ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsncnv.b | . . . . 5 ⊢ 𝐵 ∈ V | |
2 | mapsncnv.x | . . . . . 6 ⊢ 𝑋 ∈ V | |
3 | 2 | snex 4169 | . . . . 5 ⊢ {𝑋} ∈ V |
4 | 1, 3 | elmap 6651 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵) |
5 | 2 | fsn2 5667 | . . . . 5 ⊢ (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹‘𝑋) ∈ 𝐵 ∧ 𝐹 = {〈𝑋, (𝐹‘𝑋)〉})) |
6 | 5 | simprbi 273 | . . . 4 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
7 | 4, 6 | sylbi 120 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
8 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
9 | 8 | oveq2i 5861 | . . 3 ⊢ (𝐵 ↑𝑚 𝑆) = (𝐵 ↑𝑚 {𝑋}) |
10 | 7, 9 | eleq2s 2265 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
11 | 8 | xpeq1i 4629 | . . 3 ⊢ (𝑆 × {(𝐹‘𝑋)}) = ({𝑋} × {(𝐹‘𝑋)}) |
12 | fvexg 5513 | . . . . 5 ⊢ ((𝐹 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑋 ∈ V) → (𝐹‘𝑋) ∈ V) | |
13 | 2, 12 | mpan2 423 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → (𝐹‘𝑋) ∈ V) |
14 | xpsng 5668 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V) → ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉}) | |
15 | 2, 13, 14 | sylancr 412 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉}) |
16 | 11, 15 | eqtr2id 2216 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → {〈𝑋, (𝐹‘𝑋)〉} = (𝑆 × {(𝐹‘𝑋)})) |
17 | 10, 16 | eqtrd 2203 | 1 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 {csn 3581 〈cop 3584 × cxp 4607 ⟶wf 5192 ‘cfv 5196 (class class class)co 5850 ↑𝑚 cmap 6622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-map 6624 |
This theorem is referenced by: mapsncnv 6669 |
Copyright terms: Public domain | W3C validator |