ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnconst GIF version

Theorem mapsnconst 6849
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
Assertion
Ref Expression
mapsnconst (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . . 5 𝐵 ∈ V
2 mapsncnv.x . . . . . 6 𝑋 ∈ V
32snex 4269 . . . . 5 {𝑋} ∈ V
41, 3elmap 6832 . . . 4 (𝐹 ∈ (𝐵𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵)
52fsn2 5811 . . . . 5 (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹𝑋) ∈ 𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩}))
65simprbi 275 . . . 4 (𝐹:{𝑋}⟶𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
74, 6sylbi 121 . . 3 (𝐹 ∈ (𝐵𝑚 {𝑋}) → 𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
8 mapsncnv.s . . . 4 𝑆 = {𝑋}
98oveq2i 6018 . . 3 (𝐵𝑚 𝑆) = (𝐵𝑚 {𝑋})
107, 9eleq2s 2324 . 2 (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
118xpeq1i 4739 . . 3 (𝑆 × {(𝐹𝑋)}) = ({𝑋} × {(𝐹𝑋)})
12 fvexg 5648 . . . . 5 ((𝐹 ∈ (𝐵𝑚 𝑆) ∧ 𝑋 ∈ V) → (𝐹𝑋) ∈ V)
132, 12mpan2 425 . . . 4 (𝐹 ∈ (𝐵𝑚 𝑆) → (𝐹𝑋) ∈ V)
14 xpsng 5812 . . . 4 ((𝑋 ∈ V ∧ (𝐹𝑋) ∈ V) → ({𝑋} × {(𝐹𝑋)}) = {⟨𝑋, (𝐹𝑋)⟩})
152, 13, 14sylancr 414 . . 3 (𝐹 ∈ (𝐵𝑚 𝑆) → ({𝑋} × {(𝐹𝑋)}) = {⟨𝑋, (𝐹𝑋)⟩})
1611, 15eqtr2id 2275 . 2 (𝐹 ∈ (𝐵𝑚 𝑆) → {⟨𝑋, (𝐹𝑋)⟩} = (𝑆 × {(𝐹𝑋)}))
1710, 16eqtrd 2262 1 (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cop 3669   × cxp 4717  wf 5314  cfv 5318  (class class class)co 6007  𝑚 cmap 6803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-map 6805
This theorem is referenced by:  mapsncnv  6850
  Copyright terms: Public domain W3C validator