Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapsnconst | GIF version |
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
mapsnconst | ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsncnv.b | . . . . 5 ⊢ 𝐵 ∈ V | |
2 | mapsncnv.x | . . . . . 6 ⊢ 𝑋 ∈ V | |
3 | 2 | snex 4163 | . . . . 5 ⊢ {𝑋} ∈ V |
4 | 1, 3 | elmap 6639 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵) |
5 | 2 | fsn2 5658 | . . . . 5 ⊢ (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹‘𝑋) ∈ 𝐵 ∧ 𝐹 = {〈𝑋, (𝐹‘𝑋)〉})) |
6 | 5 | simprbi 273 | . . . 4 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
7 | 4, 6 | sylbi 120 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
8 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
9 | 8 | oveq2i 5852 | . . 3 ⊢ (𝐵 ↑𝑚 𝑆) = (𝐵 ↑𝑚 {𝑋}) |
10 | 7, 9 | eleq2s 2260 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
11 | 8 | xpeq1i 4623 | . . 3 ⊢ (𝑆 × {(𝐹‘𝑋)}) = ({𝑋} × {(𝐹‘𝑋)}) |
12 | fvexg 5504 | . . . . 5 ⊢ ((𝐹 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑋 ∈ V) → (𝐹‘𝑋) ∈ V) | |
13 | 2, 12 | mpan2 422 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → (𝐹‘𝑋) ∈ V) |
14 | xpsng 5659 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V) → ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉}) | |
15 | 2, 13, 14 | sylancr 411 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉}) |
16 | 11, 15 | eqtr2id 2211 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → {〈𝑋, (𝐹‘𝑋)〉} = (𝑆 × {(𝐹‘𝑋)})) |
17 | 10, 16 | eqtrd 2198 | 1 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2725 {csn 3575 〈cop 3578 × cxp 4601 ⟶wf 5183 ‘cfv 5187 (class class class)co 5841 ↑𝑚 cmap 6610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-ov 5844 df-oprab 5845 df-mpo 5846 df-map 6612 |
This theorem is referenced by: mapsncnv 6657 |
Copyright terms: Public domain | W3C validator |