ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnconst GIF version

Theorem mapsnconst 6431
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
Assertion
Ref Expression
mapsnconst (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . . 5 𝐵 ∈ V
2 mapsncnv.x . . . . . 6 𝑋 ∈ V
32snex 4011 . . . . 5 {𝑋} ∈ V
41, 3elmap 6414 . . . 4 (𝐹 ∈ (𝐵𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵)
52fsn2 5455 . . . . 5 (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹𝑋) ∈ 𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩}))
65simprbi 269 . . . 4 (𝐹:{𝑋}⟶𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
74, 6sylbi 119 . . 3 (𝐹 ∈ (𝐵𝑚 {𝑋}) → 𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
8 mapsncnv.s . . . 4 𝑆 = {𝑋}
98oveq2i 5645 . . 3 (𝐵𝑚 𝑆) = (𝐵𝑚 {𝑋})
107, 9eleq2s 2182 . 2 (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
118xpeq1i 4448 . . 3 (𝑆 × {(𝐹𝑋)}) = ({𝑋} × {(𝐹𝑋)})
12 fvexg 5308 . . . . 5 ((𝐹 ∈ (𝐵𝑚 𝑆) ∧ 𝑋 ∈ V) → (𝐹𝑋) ∈ V)
132, 12mpan2 416 . . . 4 (𝐹 ∈ (𝐵𝑚 𝑆) → (𝐹𝑋) ∈ V)
14 xpsng 5456 . . . 4 ((𝑋 ∈ V ∧ (𝐹𝑋) ∈ V) → ({𝑋} × {(𝐹𝑋)}) = {⟨𝑋, (𝐹𝑋)⟩})
152, 13, 14sylancr 405 . . 3 (𝐹 ∈ (𝐵𝑚 𝑆) → ({𝑋} × {(𝐹𝑋)}) = {⟨𝑋, (𝐹𝑋)⟩})
1611, 15syl5req 2133 . 2 (𝐹 ∈ (𝐵𝑚 𝑆) → {⟨𝑋, (𝐹𝑋)⟩} = (𝑆 × {(𝐹𝑋)}))
1710, 16eqtrd 2120 1 (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  wcel 1438  Vcvv 2619  {csn 3441  cop 3444   × cxp 4426  wf 4998  cfv 5002  (class class class)co 5634  𝑚 cmap 6385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-map 6387
This theorem is referenced by:  mapsncnv  6432
  Copyright terms: Public domain W3C validator