![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mapsnconst | GIF version |
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
mapsnconst | ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsncnv.b | . . . . 5 ⊢ 𝐵 ∈ V | |
2 | mapsncnv.x | . . . . . 6 ⊢ 𝑋 ∈ V | |
3 | 2 | snex 4187 | . . . . 5 ⊢ {𝑋} ∈ V |
4 | 1, 3 | elmap 6679 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵) |
5 | 2 | fsn2 5692 | . . . . 5 ⊢ (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹‘𝑋) ∈ 𝐵 ∧ 𝐹 = {⟨𝑋, (𝐹‘𝑋)⟩})) |
6 | 5 | simprbi 275 | . . . 4 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = {⟨𝑋, (𝐹‘𝑋)⟩}) |
7 | 4, 6 | sylbi 121 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) → 𝐹 = {⟨𝑋, (𝐹‘𝑋)⟩}) |
8 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
9 | 8 | oveq2i 5888 | . . 3 ⊢ (𝐵 ↑𝑚 𝑆) = (𝐵 ↑𝑚 {𝑋}) |
10 | 7, 9 | eleq2s 2272 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = {⟨𝑋, (𝐹‘𝑋)⟩}) |
11 | 8 | xpeq1i 4648 | . . 3 ⊢ (𝑆 × {(𝐹‘𝑋)}) = ({𝑋} × {(𝐹‘𝑋)}) |
12 | fvexg 5536 | . . . . 5 ⊢ ((𝐹 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑋 ∈ V) → (𝐹‘𝑋) ∈ V) | |
13 | 2, 12 | mpan2 425 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → (𝐹‘𝑋) ∈ V) |
14 | xpsng 5693 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V) → ({𝑋} × {(𝐹‘𝑋)}) = {⟨𝑋, (𝐹‘𝑋)⟩}) | |
15 | 2, 13, 14 | sylancr 414 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → ({𝑋} × {(𝐹‘𝑋)}) = {⟨𝑋, (𝐹‘𝑋)⟩}) |
16 | 11, 15 | eqtr2id 2223 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → {⟨𝑋, (𝐹‘𝑋)⟩} = (𝑆 × {(𝐹‘𝑋)})) |
17 | 10, 16 | eqtrd 2210 | 1 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 {csn 3594 ⟨cop 3597 × cxp 4626 ⟶wf 5214 ‘cfv 5218 (class class class)co 5877 ↑𝑚 cmap 6650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-map 6652 |
This theorem is referenced by: mapsncnv 6697 |
Copyright terms: Public domain | W3C validator |