ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnconst GIF version

Theorem mapsnconst 6656
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
Assertion
Ref Expression
mapsnconst (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . . 5 𝐵 ∈ V
2 mapsncnv.x . . . . . 6 𝑋 ∈ V
32snex 4163 . . . . 5 {𝑋} ∈ V
41, 3elmap 6639 . . . 4 (𝐹 ∈ (𝐵𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵)
52fsn2 5658 . . . . 5 (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹𝑋) ∈ 𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩}))
65simprbi 273 . . . 4 (𝐹:{𝑋}⟶𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
74, 6sylbi 120 . . 3 (𝐹 ∈ (𝐵𝑚 {𝑋}) → 𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
8 mapsncnv.s . . . 4 𝑆 = {𝑋}
98oveq2i 5852 . . 3 (𝐵𝑚 𝑆) = (𝐵𝑚 {𝑋})
107, 9eleq2s 2260 . 2 (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
118xpeq1i 4623 . . 3 (𝑆 × {(𝐹𝑋)}) = ({𝑋} × {(𝐹𝑋)})
12 fvexg 5504 . . . . 5 ((𝐹 ∈ (𝐵𝑚 𝑆) ∧ 𝑋 ∈ V) → (𝐹𝑋) ∈ V)
132, 12mpan2 422 . . . 4 (𝐹 ∈ (𝐵𝑚 𝑆) → (𝐹𝑋) ∈ V)
14 xpsng 5659 . . . 4 ((𝑋 ∈ V ∧ (𝐹𝑋) ∈ V) → ({𝑋} × {(𝐹𝑋)}) = {⟨𝑋, (𝐹𝑋)⟩})
152, 13, 14sylancr 411 . . 3 (𝐹 ∈ (𝐵𝑚 𝑆) → ({𝑋} × {(𝐹𝑋)}) = {⟨𝑋, (𝐹𝑋)⟩})
1611, 15eqtr2id 2211 . 2 (𝐹 ∈ (𝐵𝑚 𝑆) → {⟨𝑋, (𝐹𝑋)⟩} = (𝑆 × {(𝐹𝑋)}))
1710, 16eqtrd 2198 1 (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  Vcvv 2725  {csn 3575  cop 3578   × cxp 4601  wf 5183  cfv 5187  (class class class)co 5841  𝑚 cmap 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-reu 2450  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-ov 5844  df-oprab 5845  df-mpo 5846  df-map 6612
This theorem is referenced by:  mapsncnv  6657
  Copyright terms: Public domain W3C validator