| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsnconst | GIF version | ||
| Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| Ref | Expression |
|---|---|
| mapsnconst | ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.b | . . . . 5 ⊢ 𝐵 ∈ V | |
| 2 | mapsncnv.x | . . . . . 6 ⊢ 𝑋 ∈ V | |
| 3 | 2 | snex 4248 | . . . . 5 ⊢ {𝑋} ∈ V |
| 4 | 1, 3 | elmap 6794 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵) |
| 5 | 2 | fsn2 5782 | . . . . 5 ⊢ (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹‘𝑋) ∈ 𝐵 ∧ 𝐹 = {〈𝑋, (𝐹‘𝑋)〉})) |
| 6 | 5 | simprbi 275 | . . . 4 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
| 7 | 4, 6 | sylbi 121 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
| 8 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
| 9 | 8 | oveq2i 5985 | . . 3 ⊢ (𝐵 ↑𝑚 𝑆) = (𝐵 ↑𝑚 {𝑋}) |
| 10 | 7, 9 | eleq2s 2304 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
| 11 | 8 | xpeq1i 4716 | . . 3 ⊢ (𝑆 × {(𝐹‘𝑋)}) = ({𝑋} × {(𝐹‘𝑋)}) |
| 12 | fvexg 5622 | . . . . 5 ⊢ ((𝐹 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑋 ∈ V) → (𝐹‘𝑋) ∈ V) | |
| 13 | 2, 12 | mpan2 425 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → (𝐹‘𝑋) ∈ V) |
| 14 | xpsng 5783 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V) → ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉}) | |
| 15 | 2, 13, 14 | sylancr 414 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉}) |
| 16 | 11, 15 | eqtr2id 2255 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → {〈𝑋, (𝐹‘𝑋)〉} = (𝑆 × {(𝐹‘𝑋)})) |
| 17 | 10, 16 | eqtrd 2242 | 1 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 {csn 3646 〈cop 3649 × cxp 4694 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ↑𝑚 cmap 6765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-map 6767 |
| This theorem is referenced by: mapsncnv 6812 |
| Copyright terms: Public domain | W3C validator |