| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsnconst | GIF version | ||
| Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| Ref | Expression |
|---|---|
| mapsnconst | ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.b | . . . . 5 ⊢ 𝐵 ∈ V | |
| 2 | mapsncnv.x | . . . . . 6 ⊢ 𝑋 ∈ V | |
| 3 | 2 | snex 4219 | . . . . 5 ⊢ {𝑋} ∈ V |
| 4 | 1, 3 | elmap 6745 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵) |
| 5 | 2 | fsn2 5739 | . . . . 5 ⊢ (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹‘𝑋) ∈ 𝐵 ∧ 𝐹 = {〈𝑋, (𝐹‘𝑋)〉})) |
| 6 | 5 | simprbi 275 | . . . 4 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
| 7 | 4, 6 | sylbi 121 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
| 8 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
| 9 | 8 | oveq2i 5936 | . . 3 ⊢ (𝐵 ↑𝑚 𝑆) = (𝐵 ↑𝑚 {𝑋}) |
| 10 | 7, 9 | eleq2s 2291 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
| 11 | 8 | xpeq1i 4684 | . . 3 ⊢ (𝑆 × {(𝐹‘𝑋)}) = ({𝑋} × {(𝐹‘𝑋)}) |
| 12 | fvexg 5580 | . . . . 5 ⊢ ((𝐹 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑋 ∈ V) → (𝐹‘𝑋) ∈ V) | |
| 13 | 2, 12 | mpan2 425 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → (𝐹‘𝑋) ∈ V) |
| 14 | xpsng 5740 | . . . 4 ⊢ ((𝑋 ∈ V ∧ (𝐹‘𝑋) ∈ V) → ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉}) | |
| 15 | 2, 13, 14 | sylancr 414 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉}) |
| 16 | 11, 15 | eqtr2id 2242 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → {〈𝑋, (𝐹‘𝑋)〉} = (𝑆 × {(𝐹‘𝑋)})) |
| 17 | 10, 16 | eqtrd 2229 | 1 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 〈cop 3626 × cxp 4662 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 ↑𝑚 cmap 6716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-map 6718 |
| This theorem is referenced by: mapsncnv 6763 |
| Copyright terms: Public domain | W3C validator |