![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3id | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr3id.1 | ⊢ 𝐵 = 𝐴 |
eqtr3id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eqtr3id | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3id.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2191 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqtr3id.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | eqtrid 2232 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-4 1520 ax-17 1536 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 |
This theorem is referenced by: 3eqtr3g 2243 csbeq1a 3078 ssdifeq0 3517 pofun 4324 opabbi2dv 4788 funimaexg 5312 fresin 5406 f1imacnv 5490 foimacnv 5491 fsn2 5703 fmptpr 5721 funiunfvdm 5777 funiunfvdmf 5778 fcof1o 5803 f1opw2 6090 fnexALT 6125 eqerlem 6579 pmresg 6689 mapsn 6703 fopwdom 6849 mapen 6859 fiintim 6941 xpfi 6942 sbthlemi8 6976 sbthlemi9 6977 ctssdccl 7123 exmidfodomrlemim 7213 mul02 8357 recdivap 8688 fzpreddisj 10084 fzshftral 10121 qbtwnrelemcalc 10269 frec2uzrdg 10422 frecuzrdgrcl 10423 frecuzrdgsuc 10427 frecuzrdgrclt 10428 frecuzrdgg 10429 binom3 10651 bcn2 10757 hashfz1 10776 hashunlem 10797 hashfacen 10829 cnrecnv 10932 resqrexlemnm 11040 amgm2 11140 2zsupmax 11247 xrmaxltsup 11279 xrmaxadd 11282 xrbdtri 11297 fisumss 11413 fsumcnv 11458 telfsumo 11487 fsumiun 11498 arisum2 11520 fprodssdc 11611 fprodsplitdc 11617 fprodsplit 11618 fprodcnv 11646 ege2le3 11692 efgt1p 11717 cos01bnd 11779 suprzubdc 11966 dfgcd3 12024 eucalgval 12067 sqrt2irrlem 12174 pcid 12336 setsslid 12526 ressinbasd 12547 xpsff1o 12786 grpressid 12957 baspartn 13821 txdis1cn 14049 cnmpt21 14062 cnmpt22 14065 hmeores 14086 metreslem 14151 remetdval 14310 dvfvalap 14421 binom4 14668 1lgs 14715 lgs1 14716 lgseisenlem1 14721 lgseisenlem2 14722 nninfsellemqall 15036 |
Copyright terms: Public domain | W3C validator |