| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr3id.1 | ⊢ 𝐵 = 𝐴 |
| eqtr3id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eqtr3id | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3id.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqtr3id.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | eqtrid 2241 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtr3g 2252 csbeq1a 3093 ssdifeq0 3534 pofun 4348 opabbi2dv 4816 funimaexg 5343 fresin 5439 f1imacnv 5524 foimacnv 5525 fsn2 5739 fmptpr 5757 funiunfvdm 5813 funiunfvdmf 5814 fcof1o 5839 f1opw2 6133 fnexALT 6177 eqerlem 6632 pmresg 6744 mapsn 6758 fopwdom 6906 mapen 6916 fiintim 7001 xpfi 7002 sbthlemi8 7039 sbthlemi9 7040 ctssdccl 7186 exmidfodomrlemim 7282 mul02 8432 recdivap 8764 fzpreddisj 10165 fzshftral 10202 suprzubdc 10345 qbtwnrelemcalc 10364 frec2uzrdg 10520 frecuzrdgrcl 10521 frecuzrdgsuc 10525 frecuzrdgrclt 10526 frecuzrdgg 10527 seqf1oglem2 10631 binom3 10768 bcn2 10875 hashfz1 10894 hashunlem 10915 hashfacen 10947 cnrecnv 11094 resqrexlemnm 11202 amgm2 11302 2zsupmax 11410 xrmaxltsup 11442 xrmaxadd 11445 xrbdtri 11460 fisumss 11576 fsumcnv 11621 telfsumo 11650 fsumiun 11661 arisum2 11683 fprodssdc 11774 fprodsplitdc 11780 fprodsplit 11781 fprodcnv 11809 ege2le3 11855 efgt1p 11880 cos01bnd 11942 dfgcd3 12204 eucalgval 12249 sqrt2irrlem 12356 pcid 12520 4sqlem15 12601 4sqlem16 12602 setsslid 12756 ressinbasd 12779 xpsff1o 13053 grpressid 13265 crng2idl 14165 znleval 14287 baspartn 14394 txdis1cn 14622 cnmpt21 14635 cnmpt22 14638 hmeores 14659 metreslem 14724 remetdval 14891 dvfvalap 15025 binom4 15323 mpodvdsmulf1o 15334 perfectlem2 15344 1lgs 15392 lgs1 15393 lgseisenlem1 15419 lgseisenlem2 15420 lgseisenlem3 15421 lgsquadlem2 15427 lgsquad2lem2 15431 nninfsellemqall 15770 nninfnfiinf 15778 |
| Copyright terms: Public domain | W3C validator |