![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3id | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr3id.1 | ⊢ 𝐵 = 𝐴 |
eqtr3id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eqtr3id | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3id.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2197 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqtr3id.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | eqtrid 2238 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: 3eqtr3g 2249 csbeq1a 3089 ssdifeq0 3529 pofun 4343 opabbi2dv 4811 funimaexg 5338 fresin 5432 f1imacnv 5517 foimacnv 5518 fsn2 5732 fmptpr 5750 funiunfvdm 5806 funiunfvdmf 5807 fcof1o 5832 f1opw2 6124 fnexALT 6163 eqerlem 6618 pmresg 6730 mapsn 6744 fopwdom 6892 mapen 6902 fiintim 6985 xpfi 6986 sbthlemi8 7023 sbthlemi9 7024 ctssdccl 7170 exmidfodomrlemim 7261 mul02 8406 recdivap 8737 fzpreddisj 10137 fzshftral 10174 qbtwnrelemcalc 10324 frec2uzrdg 10480 frecuzrdgrcl 10481 frecuzrdgsuc 10485 frecuzrdgrclt 10486 frecuzrdgg 10487 seqf1oglem2 10591 binom3 10728 bcn2 10835 hashfz1 10854 hashunlem 10875 hashfacen 10907 cnrecnv 11054 resqrexlemnm 11162 amgm2 11262 2zsupmax 11369 xrmaxltsup 11401 xrmaxadd 11404 xrbdtri 11419 fisumss 11535 fsumcnv 11580 telfsumo 11609 fsumiun 11620 arisum2 11642 fprodssdc 11733 fprodsplitdc 11739 fprodsplit 11740 fprodcnv 11768 ege2le3 11814 efgt1p 11839 cos01bnd 11901 suprzubdc 12089 dfgcd3 12147 eucalgval 12192 sqrt2irrlem 12299 pcid 12462 4sqlem15 12543 4sqlem16 12544 setsslid 12669 ressinbasd 12692 xpsff1o 12932 grpressid 13133 crng2idl 14027 znleval 14141 baspartn 14218 txdis1cn 14446 cnmpt21 14459 cnmpt22 14462 hmeores 14483 metreslem 14548 remetdval 14707 dvfvalap 14835 binom4 15111 1lgs 15159 lgs1 15160 lgseisenlem1 15186 lgseisenlem2 15187 lgseisenlem3 15188 nninfsellemqall 15505 |
Copyright terms: Public domain | W3C validator |