| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr3id.1 | ⊢ 𝐵 = 𝐴 |
| eqtr3id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eqtr3id | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3id.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2233 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqtr3id.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | eqtrid 2274 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: 3eqtr3g 2285 csbeq1a 3133 ssdifeq0 3574 pofun 4402 opabbi2dv 4870 funimaexg 5404 fresin 5503 f1imacnv 5588 foimacnv 5589 fsn2 5808 fmptpr 5830 funiunfvdm 5886 funiunfvdmf 5887 fcof1o 5912 f1opw2 6210 fnexALT 6254 eqerlem 6709 pmresg 6821 mapsn 6835 en2 6971 fopwdom 6993 mapen 7003 fiintim 7089 xpfi 7090 sbthlemi8 7127 sbthlemi9 7128 ctssdccl 7274 exmidfodomrlemim 7375 mul02 8529 recdivap 8861 fzpreddisj 10263 fzshftral 10300 suprzubdc 10451 qbtwnrelemcalc 10470 frec2uzrdg 10626 frecuzrdgrcl 10627 frecuzrdgsuc 10631 frecuzrdgrclt 10632 frecuzrdgg 10633 seqf1oglem2 10737 binom3 10874 bcn2 10981 hashfz1 11000 hashunlem 11021 hashfacen 11053 cnrecnv 11416 resqrexlemnm 11524 amgm2 11624 2zsupmax 11732 xrmaxltsup 11764 xrmaxadd 11767 xrbdtri 11782 fisumss 11898 fsumcnv 11943 telfsumo 11972 fsumiun 11983 arisum2 12005 fprodssdc 12096 fprodsplitdc 12102 fprodsplit 12103 fprodcnv 12131 ege2le3 12177 efgt1p 12202 cos01bnd 12264 dfgcd3 12526 eucalgval 12571 sqrt2irrlem 12678 pcid 12842 4sqlem15 12923 4sqlem16 12924 setsslid 13078 ressinbasd 13102 xpsff1o 13377 grpressid 13589 crng2idl 14489 znleval 14611 baspartn 14718 txdis1cn 14946 cnmpt21 14959 cnmpt22 14962 hmeores 14983 metreslem 15048 remetdval 15215 dvfvalap 15349 binom4 15647 mpodvdsmulf1o 15658 perfectlem2 15668 1lgs 15716 lgs1 15717 lgseisenlem1 15743 lgseisenlem2 15744 lgseisenlem3 15745 lgsquadlem2 15751 lgsquad2lem2 15755 nninfsellemqall 16340 nninfnfiinf 16348 |
| Copyright terms: Public domain | W3C validator |