| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr3id.1 | ⊢ 𝐵 = 𝐴 |
| eqtr3id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eqtr3id | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3id.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2208 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqtr3id.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | eqtrid 2249 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: 3eqtr3g 2260 csbeq1a 3101 ssdifeq0 3542 pofun 4357 opabbi2dv 4825 funimaexg 5352 fresin 5448 f1imacnv 5533 foimacnv 5534 fsn2 5748 fmptpr 5766 funiunfvdm 5822 funiunfvdmf 5823 fcof1o 5848 f1opw2 6142 fnexALT 6186 eqerlem 6641 pmresg 6753 mapsn 6767 fopwdom 6915 mapen 6925 fiintim 7010 xpfi 7011 sbthlemi8 7048 sbthlemi9 7049 ctssdccl 7195 exmidfodomrlemim 7291 mul02 8441 recdivap 8773 fzpreddisj 10175 fzshftral 10212 suprzubdc 10360 qbtwnrelemcalc 10379 frec2uzrdg 10535 frecuzrdgrcl 10536 frecuzrdgsuc 10540 frecuzrdgrclt 10541 frecuzrdgg 10542 seqf1oglem2 10646 binom3 10783 bcn2 10890 hashfz1 10909 hashunlem 10930 hashfacen 10962 cnrecnv 11140 resqrexlemnm 11248 amgm2 11348 2zsupmax 11456 xrmaxltsup 11488 xrmaxadd 11491 xrbdtri 11506 fisumss 11622 fsumcnv 11667 telfsumo 11696 fsumiun 11707 arisum2 11729 fprodssdc 11820 fprodsplitdc 11826 fprodsplit 11827 fprodcnv 11855 ege2le3 11901 efgt1p 11926 cos01bnd 11988 dfgcd3 12250 eucalgval 12295 sqrt2irrlem 12402 pcid 12566 4sqlem15 12647 4sqlem16 12648 setsslid 12802 ressinbasd 12825 xpsff1o 13099 grpressid 13311 crng2idl 14211 znleval 14333 baspartn 14440 txdis1cn 14668 cnmpt21 14681 cnmpt22 14684 hmeores 14705 metreslem 14770 remetdval 14937 dvfvalap 15071 binom4 15369 mpodvdsmulf1o 15380 perfectlem2 15390 1lgs 15438 lgs1 15439 lgseisenlem1 15465 lgseisenlem2 15466 lgseisenlem3 15467 lgsquadlem2 15473 lgsquad2lem2 15477 nninfsellemqall 15816 nninfnfiinf 15824 |
| Copyright terms: Public domain | W3C validator |