Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3id | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr3id.1 | ⊢ 𝐵 = 𝐴 |
eqtr3id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eqtr3id | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3id.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2169 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqtr3id.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | syl5eq 2210 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: 3eqtr3g 2221 csbeq1a 3053 ssdifeq0 3490 pofun 4289 opabbi2dv 4752 funimaexg 5271 fresin 5365 f1imacnv 5448 foimacnv 5449 fsn2 5658 fmptpr 5676 funiunfvdm 5730 funiunfvdmf 5731 fcof1o 5756 f1opw2 6043 fnexALT 6078 eqerlem 6528 pmresg 6638 mapsn 6652 fopwdom 6798 mapen 6808 fiintim 6890 xpfi 6891 sbthlemi8 6925 sbthlemi9 6926 ctssdccl 7072 exmidfodomrlemim 7153 mul02 8281 recdivap 8610 fzpreddisj 10002 fzshftral 10039 qbtwnrelemcalc 10187 frec2uzrdg 10340 frecuzrdgrcl 10341 frecuzrdgsuc 10345 frecuzrdgrclt 10346 frecuzrdgg 10347 binom3 10568 bcn2 10673 hashfz1 10692 hashunlem 10713 hashfacen 10745 cnrecnv 10848 resqrexlemnm 10956 amgm2 11056 2zsupmax 11163 xrmaxltsup 11195 xrmaxadd 11198 xrbdtri 11213 fisumss 11329 fsumcnv 11374 telfsumo 11403 fsumiun 11414 arisum2 11436 fprodssdc 11527 fprodsplitdc 11533 fprodsplit 11534 fprodcnv 11562 ege2le3 11608 efgt1p 11633 cos01bnd 11695 suprzubdc 11881 dfgcd3 11939 eucalgval 11982 sqrt2irrlem 12089 pcid 12251 setsslid 12440 baspartn 12648 txdis1cn 12878 cnmpt21 12891 cnmpt22 12894 hmeores 12915 metreslem 12980 remetdval 13139 dvfvalap 13250 binom4 13497 1lgs 13544 lgs1 13545 nninfsellemqall 13855 |
Copyright terms: Public domain | W3C validator |