| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3id | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr3id.1 | ⊢ 𝐵 = 𝐴 |
| eqtr3id.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eqtr3id | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3id.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2210 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqtr3id.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | eqtrid 2251 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: 3eqtr3g 2262 csbeq1a 3106 ssdifeq0 3547 pofun 4367 opabbi2dv 4835 funimaexg 5367 fresin 5466 f1imacnv 5551 foimacnv 5552 fsn2 5767 fmptpr 5789 funiunfvdm 5845 funiunfvdmf 5846 fcof1o 5871 f1opw2 6165 fnexALT 6209 eqerlem 6664 pmresg 6776 mapsn 6790 en2 6926 fopwdom 6948 mapen 6958 fiintim 7043 xpfi 7044 sbthlemi8 7081 sbthlemi9 7082 ctssdccl 7228 exmidfodomrlemim 7325 mul02 8479 recdivap 8811 fzpreddisj 10213 fzshftral 10250 suprzubdc 10401 qbtwnrelemcalc 10420 frec2uzrdg 10576 frecuzrdgrcl 10577 frecuzrdgsuc 10581 frecuzrdgrclt 10582 frecuzrdgg 10583 seqf1oglem2 10687 binom3 10824 bcn2 10931 hashfz1 10950 hashunlem 10971 hashfacen 11003 cnrecnv 11296 resqrexlemnm 11404 amgm2 11504 2zsupmax 11612 xrmaxltsup 11644 xrmaxadd 11647 xrbdtri 11662 fisumss 11778 fsumcnv 11823 telfsumo 11852 fsumiun 11863 arisum2 11885 fprodssdc 11976 fprodsplitdc 11982 fprodsplit 11983 fprodcnv 12011 ege2le3 12057 efgt1p 12082 cos01bnd 12144 dfgcd3 12406 eucalgval 12451 sqrt2irrlem 12558 pcid 12722 4sqlem15 12803 4sqlem16 12804 setsslid 12958 ressinbasd 12981 xpsff1o 13256 grpressid 13468 crng2idl 14368 znleval 14490 baspartn 14597 txdis1cn 14825 cnmpt21 14838 cnmpt22 14841 hmeores 14862 metreslem 14927 remetdval 15094 dvfvalap 15228 binom4 15526 mpodvdsmulf1o 15537 perfectlem2 15547 1lgs 15595 lgs1 15596 lgseisenlem1 15622 lgseisenlem2 15623 lgseisenlem3 15624 lgsquadlem2 15630 lgsquad2lem2 15634 nninfsellemqall 16093 nninfnfiinf 16101 |
| Copyright terms: Public domain | W3C validator |