| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr3di.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3di | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | eqcomi 2208 | . 2 ⊢ 𝐶 = 𝐴 |
| 3 | eqtr3di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | eqtr2id 2250 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: bm2.5ii 4542 resdmdfsn 4999 f0dom0 5463 f1o00 5551 fmpt 5724 fmptsn 5763 resfunexg 5795 mapsn 6767 sbthlemi4 7044 sbthlemi6 7046 pm54.43 7280 prarloclem5 7595 recexprlem1ssl 7728 recexprlem1ssu 7729 iooval2 10019 hashsng 10924 zfz1isolem1 10966 resqrexlemover 11240 isumclim3 11653 algrp1 12287 pythagtriplem1 12507 ressbasid 12821 ressval3d 12823 ressressg 12826 tangtx 15228 coskpi 15238 lgsquadlem2 15473 2omap 15796 subctctexmid 15801 |
| Copyright terms: Public domain | W3C validator |