| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr3di.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3di | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | eqcomi 2208 | . 2 ⊢ 𝐶 = 𝐴 |
| 3 | eqtr3di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | eqtr2id 2250 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: bm2.5ii 4543 resdmdfsn 5001 f0dom0 5468 f1o00 5556 fmpt 5729 fmptsn 5772 resfunexg 5804 mapsn 6776 sbthlemi4 7061 sbthlemi6 7063 pm54.43 7297 prarloclem5 7612 recexprlem1ssl 7745 recexprlem1ssu 7746 iooval2 10036 hashsng 10941 zfz1isolem1 10983 resqrexlemover 11263 isumclim3 11676 algrp1 12310 pythagtriplem1 12530 ressbasid 12844 ressval3d 12846 ressressg 12849 tangtx 15252 coskpi 15262 lgsquadlem2 15497 2omap 15865 subctctexmid 15870 |
| Copyright terms: Public domain | W3C validator |