ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3di GIF version

Theorem eqtr3di 2213
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
eqtr3di.1 (𝜑𝐴 = 𝐵)
eqtr3di.2 𝐴 = 𝐶
Assertion
Ref Expression
eqtr3di (𝜑𝐵 = 𝐶)

Proof of Theorem eqtr3di
StepHypRef Expression
1 eqtr3di.2 . . 3 𝐴 = 𝐶
21eqcomi 2169 . 2 𝐶 = 𝐴
3 eqtr3di.1 . 2 (𝜑𝐴 = 𝐵)
42, 3eqtr2id 2211 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158
This theorem is referenced by:  bm2.5ii  4472  resdmdfsn  4926  f0dom0  5380  f1o00  5466  fmpt  5634  fmptsn  5673  resfunexg  5705  mapsn  6652  sbthlemi4  6921  sbthlemi6  6923  pm54.43  7142  prarloclem5  7437  recexprlem1ssl  7570  recexprlem1ssu  7571  iooval2  9847  hashsng  10707  zfz1isolem1  10749  resqrexlemover  10948  isumclim3  11360  algrp1  11974  pythagtriplem1  12193  tangtx  13359  coskpi  13369  subctctexmid  13841
  Copyright terms: Public domain W3C validator