| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr3di.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3di | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐶 = 𝐴 |
| 3 | eqtr3di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | eqtr2id 2242 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: bm2.5ii 4533 resdmdfsn 4990 f0dom0 5454 f1o00 5542 fmpt 5715 fmptsn 5754 resfunexg 5786 mapsn 6753 sbthlemi4 7030 sbthlemi6 7032 pm54.43 7262 prarloclem5 7572 recexprlem1ssl 7705 recexprlem1ssu 7706 iooval2 9995 hashsng 10895 zfz1isolem1 10937 resqrexlemover 11180 isumclim3 11593 algrp1 12227 pythagtriplem1 12447 ressbasid 12761 ressval3d 12763 ressressg 12766 tangtx 15121 coskpi 15131 lgsquadlem2 15366 2omap 15689 subctctexmid 15694 |
| Copyright terms: Public domain | W3C validator |