Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3di | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr3di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr3di.2 | ⊢ 𝐴 = 𝐶 |
Ref | Expression |
---|---|
eqtr3di | ⊢ (𝜑 → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3di.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | 1 | eqcomi 2174 | . 2 ⊢ 𝐶 = 𝐴 |
3 | eqtr3di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 2, 3 | eqtr2id 2216 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: bm2.5ii 4478 resdmdfsn 4932 f0dom0 5389 f1o00 5475 fmpt 5643 fmptsn 5682 resfunexg 5714 mapsn 6664 sbthlemi4 6933 sbthlemi6 6935 pm54.43 7154 prarloclem5 7449 recexprlem1ssl 7582 recexprlem1ssu 7583 iooval2 9859 hashsng 10720 zfz1isolem1 10762 resqrexlemover 10961 isumclim3 11373 algrp1 11987 pythagtriplem1 12206 tangtx 13474 coskpi 13484 subctctexmid 13956 |
Copyright terms: Public domain | W3C validator |