![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3di | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr3di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr3di.2 | ⊢ 𝐴 = 𝐶 |
Ref | Expression |
---|---|
eqtr3di | ⊢ (𝜑 → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3di.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | 1 | eqcomi 2197 | . 2 ⊢ 𝐶 = 𝐴 |
3 | eqtr3di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 2, 3 | eqtr2id 2239 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: bm2.5ii 4528 resdmdfsn 4985 f0dom0 5447 f1o00 5535 fmpt 5708 fmptsn 5747 resfunexg 5779 mapsn 6744 sbthlemi4 7019 sbthlemi6 7021 pm54.43 7250 prarloclem5 7560 recexprlem1ssl 7693 recexprlem1ssu 7694 iooval2 9981 hashsng 10869 zfz1isolem1 10911 resqrexlemover 11154 isumclim3 11566 algrp1 12184 pythagtriplem1 12403 ressbasid 12688 ressval3d 12690 ressressg 12693 tangtx 14973 coskpi 14983 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |