Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3di | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr3di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr3di.2 | ⊢ 𝐴 = 𝐶 |
Ref | Expression |
---|---|
eqtr3di | ⊢ (𝜑 → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3di.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | 1 | eqcomi 2174 | . 2 ⊢ 𝐶 = 𝐴 |
3 | eqtr3di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 2, 3 | eqtr2id 2216 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: bm2.5ii 4480 resdmdfsn 4934 f0dom0 5391 f1o00 5477 fmpt 5646 fmptsn 5685 resfunexg 5717 mapsn 6668 sbthlemi4 6937 sbthlemi6 6939 pm54.43 7167 prarloclem5 7462 recexprlem1ssl 7595 recexprlem1ssu 7596 iooval2 9872 hashsng 10733 zfz1isolem1 10775 resqrexlemover 10974 isumclim3 11386 algrp1 12000 pythagtriplem1 12219 tangtx 13553 coskpi 13563 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |