| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr3di.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3di | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | eqcomi 2210 | . 2 ⊢ 𝐶 = 𝐴 |
| 3 | eqtr3di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | eqtr2id 2252 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: bm2.5ii 4552 resdmdfsn 5011 f0dom0 5481 f1o00 5570 fmpt 5743 fmptsn 5786 resfunexg 5818 mapsn 6790 sbthlemi4 7077 sbthlemi6 7079 pm54.43 7313 prarloclem5 7633 recexprlem1ssl 7766 recexprlem1ssu 7767 iooval2 10057 hashsng 10965 zfz1isolem1 11007 resqrexlemover 11396 isumclim3 11809 algrp1 12443 pythagtriplem1 12663 ressbasid 12977 ressval3d 12979 ressressg 12982 tangtx 15385 coskpi 15395 lgsquadlem2 15630 2omap 16071 pw1map 16073 subctctexmid 16078 |
| Copyright terms: Public domain | W3C validator |