| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) | 
| Ref | Expression | 
|---|---|
| eqtr3di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| eqtr3di.2 | ⊢ 𝐴 = 𝐶 | 
| Ref | Expression | 
|---|---|
| eqtr3di | ⊢ (𝜑 → 𝐵 = 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqtr3di.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐶 = 𝐴 | 
| 3 | eqtr3di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | eqtr2id 2242 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: bm2.5ii 4532 resdmdfsn 4989 f0dom0 5451 f1o00 5539 fmpt 5712 fmptsn 5751 resfunexg 5783 mapsn 6749 sbthlemi4 7026 sbthlemi6 7028 pm54.43 7257 prarloclem5 7567 recexprlem1ssl 7700 recexprlem1ssu 7701 iooval2 9990 hashsng 10890 zfz1isolem1 10932 resqrexlemover 11175 isumclim3 11588 algrp1 12214 pythagtriplem1 12434 ressbasid 12748 ressval3d 12750 ressressg 12753 tangtx 15074 coskpi 15084 lgsquadlem2 15319 subctctexmid 15645 | 
| Copyright terms: Public domain | W3C validator |