| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr3di.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3di | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | eqcomi 2233 | . 2 ⊢ 𝐶 = 𝐴 |
| 3 | eqtr3di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | eqtr2id 2275 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: bm2.5ii 4587 resdmdfsn 5047 f0dom0 5518 f1o00 5607 fmpt 5784 fmptsn 5827 resfunexg 5859 mapsn 6835 sbthlemi4 7123 sbthlemi6 7125 pm54.43 7359 prarloclem5 7683 recexprlem1ssl 7816 recexprlem1ssu 7817 iooval2 10107 hashsng 11015 zfz1isolem1 11057 resqrexlemover 11516 isumclim3 11929 algrp1 12563 pythagtriplem1 12783 ressbasid 13098 ressval3d 13100 ressressg 13103 tangtx 15506 coskpi 15516 lgsquadlem2 15751 2omap 16318 pw1map 16320 subctctexmid 16325 |
| Copyright terms: Public domain | W3C validator |