| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr3di.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3di | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐶 = 𝐴 |
| 3 | eqtr3di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | eqtr2id 2242 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: bm2.5ii 4533 resdmdfsn 4990 f0dom0 5454 f1o00 5542 fmpt 5715 fmptsn 5754 resfunexg 5786 mapsn 6758 sbthlemi4 7035 sbthlemi6 7037 pm54.43 7271 prarloclem5 7586 recexprlem1ssl 7719 recexprlem1ssu 7720 iooval2 10009 hashsng 10909 zfz1isolem1 10951 resqrexlemover 11194 isumclim3 11607 algrp1 12241 pythagtriplem1 12461 ressbasid 12775 ressval3d 12777 ressressg 12780 tangtx 15182 coskpi 15192 lgsquadlem2 15427 2omap 15750 subctctexmid 15755 |
| Copyright terms: Public domain | W3C validator |