ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recextlem1 GIF version

Theorem recextlem1 8094
Description: Lemma for recexap 8096. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))

Proof of Theorem recextlem1
StepHypRef Expression
1 simpl 107 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 ax-icn 7419 . . . . 5 i ∈ ℂ
3 mulcl 7448 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
42, 3mpan 415 . . . 4 (𝐵 ∈ ℂ → (i · 𝐵) ∈ ℂ)
54adantl 271 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
6 subcl 7660 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 − (i · 𝐵)) ∈ ℂ)
74, 6sylan2 280 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (i · 𝐵)) ∈ ℂ)
81, 5, 7adddird 7492 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · (𝐴 − (i · 𝐵))) + ((i · 𝐵) · (𝐴 − (i · 𝐵)))))
91, 1, 5subdid 7871 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))))
105, 1, 5subdid 7871 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵) · (𝐴 − (i · 𝐵))) = (((i · 𝐵) · 𝐴) − ((i · 𝐵) · (i · 𝐵))))
11 mulcom 7450 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 · (i · 𝐵)) = ((i · 𝐵) · 𝐴))
124, 11sylan2 280 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (i · 𝐵)) = ((i · 𝐵) · 𝐴))
13 ixi 8036 . . . . . . . . . 10 (i · i) = -1
1413oveq1i 5644 . . . . . . . . 9 ((i · i) · (𝐵 · 𝐵)) = (-1 · (𝐵 · 𝐵))
15 mulcl 7448 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · 𝐵) ∈ ℂ)
1615mulm1d 7867 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · (𝐵 · 𝐵)) = -(𝐵 · 𝐵))
1714, 16syl5req 2133 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · i) · (𝐵 · 𝐵)))
18 mul4 7593 . . . . . . . . 9 (((i ∈ ℂ ∧ i ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((i · i) · (𝐵 · 𝐵)) = ((i · 𝐵) · (i · 𝐵)))
192, 2, 18mpanl12 427 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · (𝐵 · 𝐵)) = ((i · 𝐵) · (i · 𝐵)))
2017, 19eqtrd 2120 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2120anidms 389 . . . . . 6 (𝐵 ∈ ℂ → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2221adantl 271 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2312, 22oveq12d 5652 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵)) = (((i · 𝐵) · 𝐴) − ((i · 𝐵) · (i · 𝐵))))
2410, 23eqtr4d 2123 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵) · (𝐴 − (i · 𝐵))) = ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵)))
259, 24oveq12d 5652 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐴 − (i · 𝐵))) + ((i · 𝐵) · (𝐴 − (i · 𝐵)))) = (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))))
26 mulcl 7448 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
2726anidms 389 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 𝐴) ∈ ℂ)
2827adantr 270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
29 mulcl 7448 . . . . 5 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 · (i · 𝐵)) ∈ ℂ)
304, 29sylan2 280 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (i · 𝐵)) ∈ ℂ)
3115negcld 7759 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) ∈ ℂ)
3231anidms 389 . . . . 5 (𝐵 ∈ ℂ → -(𝐵 · 𝐵) ∈ ℂ)
3332adantl 271 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) ∈ ℂ)
3428, 30, 33npncand 7796 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))) = ((𝐴 · 𝐴) − -(𝐵 · 𝐵)))
3515anidms 389 . . . 4 (𝐵 ∈ ℂ → (𝐵 · 𝐵) ∈ ℂ)
36 subneg 7710 . . . 4 (((𝐴 · 𝐴) ∈ ℂ ∧ (𝐵 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐴) − -(𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3727, 35, 36syl2an 283 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐴) − -(𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3834, 37eqtrd 2120 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
398, 25, 383eqtrd 2124 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  (class class class)co 5634  cc 7327  1c1 7330  ici 7331   + caddc 7332   · cmul 7334  cmin 7632  -cneg 7633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-setind 4343  ax-resscn 7416  ax-1cn 7417  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-sub 7634  df-neg 7635
This theorem is referenced by:  recexap  8096
  Copyright terms: Public domain W3C validator