ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recextlem1 GIF version

Theorem recextlem1 8611
Description: Lemma for recexap 8613. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด + (i ยท ๐ต)) ยท (๐ด โˆ’ (i ยท ๐ต))) = ((๐ด ยท ๐ด) + (๐ต ยท ๐ต)))

Proof of Theorem recextlem1
StepHypRef Expression
1 simpl 109 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ๐ด โˆˆ โ„‚)
2 ax-icn 7909 . . . . 5 i โˆˆ โ„‚
3 mulcl 7941 . . . . 5 ((i โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (i ยท ๐ต) โˆˆ โ„‚)
42, 3mpan 424 . . . 4 (๐ต โˆˆ โ„‚ โ†’ (i ยท ๐ต) โˆˆ โ„‚)
54adantl 277 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (i ยท ๐ต) โˆˆ โ„‚)
6 subcl 8159 . . . 4 ((๐ด โˆˆ โ„‚ โˆง (i ยท ๐ต) โˆˆ โ„‚) โ†’ (๐ด โˆ’ (i ยท ๐ต)) โˆˆ โ„‚)
74, 6sylan2 286 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด โˆ’ (i ยท ๐ต)) โˆˆ โ„‚)
81, 5, 7adddird 7986 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด + (i ยท ๐ต)) ยท (๐ด โˆ’ (i ยท ๐ต))) = ((๐ด ยท (๐ด โˆ’ (i ยท ๐ต))) + ((i ยท ๐ต) ยท (๐ด โˆ’ (i ยท ๐ต)))))
91, 1, 5subdid 8374 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท (๐ด โˆ’ (i ยท ๐ต))) = ((๐ด ยท ๐ด) โˆ’ (๐ด ยท (i ยท ๐ต))))
105, 1, 5subdid 8374 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((i ยท ๐ต) ยท (๐ด โˆ’ (i ยท ๐ต))) = (((i ยท ๐ต) ยท ๐ด) โˆ’ ((i ยท ๐ต) ยท (i ยท ๐ต))))
11 mulcom 7943 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง (i ยท ๐ต) โˆˆ โ„‚) โ†’ (๐ด ยท (i ยท ๐ต)) = ((i ยท ๐ต) ยท ๐ด))
124, 11sylan2 286 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท (i ยท ๐ต)) = ((i ยท ๐ต) ยท ๐ด))
13 ixi 8543 . . . . . . . . . 10 (i ยท i) = -1
1413oveq1i 5888 . . . . . . . . 9 ((i ยท i) ยท (๐ต ยท ๐ต)) = (-1 ยท (๐ต ยท ๐ต))
15 mulcl 7941 . . . . . . . . . 10 ((๐ต โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ต ยท ๐ต) โˆˆ โ„‚)
1615mulm1d 8370 . . . . . . . . 9 ((๐ต โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (-1 ยท (๐ต ยท ๐ต)) = -(๐ต ยท ๐ต))
1714, 16eqtr2id 2223 . . . . . . . 8 ((๐ต โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ -(๐ต ยท ๐ต) = ((i ยท i) ยท (๐ต ยท ๐ต)))
18 mul4 8092 . . . . . . . . 9 (((i โˆˆ โ„‚ โˆง i โˆˆ โ„‚) โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚)) โ†’ ((i ยท i) ยท (๐ต ยท ๐ต)) = ((i ยท ๐ต) ยท (i ยท ๐ต)))
192, 2, 18mpanl12 436 . . . . . . . 8 ((๐ต โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((i ยท i) ยท (๐ต ยท ๐ต)) = ((i ยท ๐ต) ยท (i ยท ๐ต)))
2017, 19eqtrd 2210 . . . . . . 7 ((๐ต โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ -(๐ต ยท ๐ต) = ((i ยท ๐ต) ยท (i ยท ๐ต)))
2120anidms 397 . . . . . 6 (๐ต โˆˆ โ„‚ โ†’ -(๐ต ยท ๐ต) = ((i ยท ๐ต) ยท (i ยท ๐ต)))
2221adantl 277 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ -(๐ต ยท ๐ต) = ((i ยท ๐ต) ยท (i ยท ๐ต)))
2312, 22oveq12d 5896 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด ยท (i ยท ๐ต)) โˆ’ -(๐ต ยท ๐ต)) = (((i ยท ๐ต) ยท ๐ด) โˆ’ ((i ยท ๐ต) ยท (i ยท ๐ต))))
2410, 23eqtr4d 2213 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((i ยท ๐ต) ยท (๐ด โˆ’ (i ยท ๐ต))) = ((๐ด ยท (i ยท ๐ต)) โˆ’ -(๐ต ยท ๐ต)))
259, 24oveq12d 5896 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด ยท (๐ด โˆ’ (i ยท ๐ต))) + ((i ยท ๐ต) ยท (๐ด โˆ’ (i ยท ๐ต)))) = (((๐ด ยท ๐ด) โˆ’ (๐ด ยท (i ยท ๐ต))) + ((๐ด ยท (i ยท ๐ต)) โˆ’ -(๐ต ยท ๐ต))))
26 mulcl 7941 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ (๐ด ยท ๐ด) โˆˆ โ„‚)
2726anidms 397 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ (๐ด ยท ๐ด) โˆˆ โ„‚)
2827adantr 276 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท ๐ด) โˆˆ โ„‚)
29 mulcl 7941 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง (i ยท ๐ต) โˆˆ โ„‚) โ†’ (๐ด ยท (i ยท ๐ต)) โˆˆ โ„‚)
304, 29sylan2 286 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท (i ยท ๐ต)) โˆˆ โ„‚)
3115negcld 8258 . . . . . 6 ((๐ต โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ -(๐ต ยท ๐ต) โˆˆ โ„‚)
3231anidms 397 . . . . 5 (๐ต โˆˆ โ„‚ โ†’ -(๐ต ยท ๐ต) โˆˆ โ„‚)
3332adantl 277 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ -(๐ต ยท ๐ต) โˆˆ โ„‚)
3428, 30, 33npncand 8295 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((๐ด ยท ๐ด) โˆ’ (๐ด ยท (i ยท ๐ต))) + ((๐ด ยท (i ยท ๐ต)) โˆ’ -(๐ต ยท ๐ต))) = ((๐ด ยท ๐ด) โˆ’ -(๐ต ยท ๐ต)))
3515anidms 397 . . . 4 (๐ต โˆˆ โ„‚ โ†’ (๐ต ยท ๐ต) โˆˆ โ„‚)
36 subneg 8209 . . . 4 (((๐ด ยท ๐ด) โˆˆ โ„‚ โˆง (๐ต ยท ๐ต) โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ด) โˆ’ -(๐ต ยท ๐ต)) = ((๐ด ยท ๐ด) + (๐ต ยท ๐ต)))
3727, 35, 36syl2an 289 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ด) โˆ’ -(๐ต ยท ๐ต)) = ((๐ด ยท ๐ด) + (๐ต ยท ๐ต)))
3834, 37eqtrd 2210 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((๐ด ยท ๐ด) โˆ’ (๐ด ยท (i ยท ๐ต))) + ((๐ด ยท (i ยท ๐ต)) โˆ’ -(๐ต ยท ๐ต))) = ((๐ด ยท ๐ด) + (๐ต ยท ๐ต)))
398, 25, 383eqtrd 2214 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด + (i ยท ๐ต)) ยท (๐ด โˆ’ (i ยท ๐ต))) = ((๐ด ยท ๐ด) + (๐ต ยท ๐ต)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   = wceq 1353   โˆˆ wcel 2148  (class class class)co 5878  โ„‚cc 7812  1c1 7815  ici 7816   + caddc 7817   ยท cmul 7819   โˆ’ cmin 8131  -cneg 8132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7906  ax-1cn 7907  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-sub 8133  df-neg 8134
This theorem is referenced by:  recexap  8613
  Copyright terms: Public domain W3C validator