ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recextlem1 GIF version

Theorem recextlem1 8678
Description: Lemma for recexap 8680. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))

Proof of Theorem recextlem1
StepHypRef Expression
1 simpl 109 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 ax-icn 7974 . . . . 5 i ∈ ℂ
3 mulcl 8006 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
42, 3mpan 424 . . . 4 (𝐵 ∈ ℂ → (i · 𝐵) ∈ ℂ)
54adantl 277 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
6 subcl 8225 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 − (i · 𝐵)) ∈ ℂ)
74, 6sylan2 286 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (i · 𝐵)) ∈ ℂ)
81, 5, 7adddird 8052 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · (𝐴 − (i · 𝐵))) + ((i · 𝐵) · (𝐴 − (i · 𝐵)))))
91, 1, 5subdid 8440 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))))
105, 1, 5subdid 8440 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵) · (𝐴 − (i · 𝐵))) = (((i · 𝐵) · 𝐴) − ((i · 𝐵) · (i · 𝐵))))
11 mulcom 8008 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 · (i · 𝐵)) = ((i · 𝐵) · 𝐴))
124, 11sylan2 286 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (i · 𝐵)) = ((i · 𝐵) · 𝐴))
13 ixi 8610 . . . . . . . . . 10 (i · i) = -1
1413oveq1i 5932 . . . . . . . . 9 ((i · i) · (𝐵 · 𝐵)) = (-1 · (𝐵 · 𝐵))
15 mulcl 8006 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · 𝐵) ∈ ℂ)
1615mulm1d 8436 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · (𝐵 · 𝐵)) = -(𝐵 · 𝐵))
1714, 16eqtr2id 2242 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · i) · (𝐵 · 𝐵)))
18 mul4 8158 . . . . . . . . 9 (((i ∈ ℂ ∧ i ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((i · i) · (𝐵 · 𝐵)) = ((i · 𝐵) · (i · 𝐵)))
192, 2, 18mpanl12 436 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · (𝐵 · 𝐵)) = ((i · 𝐵) · (i · 𝐵)))
2017, 19eqtrd 2229 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2120anidms 397 . . . . . 6 (𝐵 ∈ ℂ → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2221adantl 277 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2312, 22oveq12d 5940 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵)) = (((i · 𝐵) · 𝐴) − ((i · 𝐵) · (i · 𝐵))))
2410, 23eqtr4d 2232 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵) · (𝐴 − (i · 𝐵))) = ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵)))
259, 24oveq12d 5940 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐴 − (i · 𝐵))) + ((i · 𝐵) · (𝐴 − (i · 𝐵)))) = (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))))
26 mulcl 8006 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
2726anidms 397 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 𝐴) ∈ ℂ)
2827adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
29 mulcl 8006 . . . . 5 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 · (i · 𝐵)) ∈ ℂ)
304, 29sylan2 286 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (i · 𝐵)) ∈ ℂ)
3115negcld 8324 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) ∈ ℂ)
3231anidms 397 . . . . 5 (𝐵 ∈ ℂ → -(𝐵 · 𝐵) ∈ ℂ)
3332adantl 277 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) ∈ ℂ)
3428, 30, 33npncand 8361 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))) = ((𝐴 · 𝐴) − -(𝐵 · 𝐵)))
3515anidms 397 . . . 4 (𝐵 ∈ ℂ → (𝐵 · 𝐵) ∈ ℂ)
36 subneg 8275 . . . 4 (((𝐴 · 𝐴) ∈ ℂ ∧ (𝐵 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐴) − -(𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3727, 35, 36syl2an 289 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐴) − -(𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3834, 37eqtrd 2229 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
398, 25, 383eqtrd 2233 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7877  1c1 7880  ici 7881   + caddc 7882   · cmul 7884  cmin 8197  -cneg 8198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199  df-neg 8200
This theorem is referenced by:  recexap  8680
  Copyright terms: Public domain W3C validator