ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recextlem1 GIF version

Theorem recextlem1 8633
Description: Lemma for recexap 8635. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))

Proof of Theorem recextlem1
StepHypRef Expression
1 simpl 109 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 ax-icn 7931 . . . . 5 i ∈ ℂ
3 mulcl 7963 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
42, 3mpan 424 . . . 4 (𝐵 ∈ ℂ → (i · 𝐵) ∈ ℂ)
54adantl 277 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
6 subcl 8181 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 − (i · 𝐵)) ∈ ℂ)
74, 6sylan2 286 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (i · 𝐵)) ∈ ℂ)
81, 5, 7adddird 8008 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · (𝐴 − (i · 𝐵))) + ((i · 𝐵) · (𝐴 − (i · 𝐵)))))
91, 1, 5subdid 8396 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))))
105, 1, 5subdid 8396 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵) · (𝐴 − (i · 𝐵))) = (((i · 𝐵) · 𝐴) − ((i · 𝐵) · (i · 𝐵))))
11 mulcom 7965 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 · (i · 𝐵)) = ((i · 𝐵) · 𝐴))
124, 11sylan2 286 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (i · 𝐵)) = ((i · 𝐵) · 𝐴))
13 ixi 8565 . . . . . . . . . 10 (i · i) = -1
1413oveq1i 5902 . . . . . . . . 9 ((i · i) · (𝐵 · 𝐵)) = (-1 · (𝐵 · 𝐵))
15 mulcl 7963 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · 𝐵) ∈ ℂ)
1615mulm1d 8392 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · (𝐵 · 𝐵)) = -(𝐵 · 𝐵))
1714, 16eqtr2id 2235 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · i) · (𝐵 · 𝐵)))
18 mul4 8114 . . . . . . . . 9 (((i ∈ ℂ ∧ i ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((i · i) · (𝐵 · 𝐵)) = ((i · 𝐵) · (i · 𝐵)))
192, 2, 18mpanl12 436 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · (𝐵 · 𝐵)) = ((i · 𝐵) · (i · 𝐵)))
2017, 19eqtrd 2222 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2120anidms 397 . . . . . 6 (𝐵 ∈ ℂ → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2221adantl 277 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2312, 22oveq12d 5910 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵)) = (((i · 𝐵) · 𝐴) − ((i · 𝐵) · (i · 𝐵))))
2410, 23eqtr4d 2225 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵) · (𝐴 − (i · 𝐵))) = ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵)))
259, 24oveq12d 5910 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐴 − (i · 𝐵))) + ((i · 𝐵) · (𝐴 − (i · 𝐵)))) = (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))))
26 mulcl 7963 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
2726anidms 397 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 𝐴) ∈ ℂ)
2827adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
29 mulcl 7963 . . . . 5 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 · (i · 𝐵)) ∈ ℂ)
304, 29sylan2 286 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (i · 𝐵)) ∈ ℂ)
3115negcld 8280 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) ∈ ℂ)
3231anidms 397 . . . . 5 (𝐵 ∈ ℂ → -(𝐵 · 𝐵) ∈ ℂ)
3332adantl 277 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) ∈ ℂ)
3428, 30, 33npncand 8317 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))) = ((𝐴 · 𝐴) − -(𝐵 · 𝐵)))
3515anidms 397 . . . 4 (𝐵 ∈ ℂ → (𝐵 · 𝐵) ∈ ℂ)
36 subneg 8231 . . . 4 (((𝐴 · 𝐴) ∈ ℂ ∧ (𝐵 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐴) − -(𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3727, 35, 36syl2an 289 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐴) − -(𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3834, 37eqtrd 2222 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
398, 25, 383eqtrd 2226 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  (class class class)co 5892  cc 7834  1c1 7837  ici 7838   + caddc 7839   · cmul 7841  cmin 8153  -cneg 8154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-setind 4551  ax-resscn 7928  ax-1cn 7929  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-mulcom 7937  ax-addass 7938  ax-mulass 7939  ax-distr 7940  ax-i2m1 7941  ax-1rid 7943  ax-0id 7944  ax-rnegex 7945  ax-cnre 7947
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5234  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-sub 8155  df-neg 8156
This theorem is referenced by:  recexap  8635
  Copyright terms: Public domain W3C validator