ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recextlem1 GIF version

Theorem recextlem1 8794
Description: Lemma for recexap 8796. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))

Proof of Theorem recextlem1
StepHypRef Expression
1 simpl 109 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 ax-icn 8090 . . . . 5 i ∈ ℂ
3 mulcl 8122 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
42, 3mpan 424 . . . 4 (𝐵 ∈ ℂ → (i · 𝐵) ∈ ℂ)
54adantl 277 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
6 subcl 8341 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 − (i · 𝐵)) ∈ ℂ)
74, 6sylan2 286 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (i · 𝐵)) ∈ ℂ)
81, 5, 7adddird 8168 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · (𝐴 − (i · 𝐵))) + ((i · 𝐵) · (𝐴 − (i · 𝐵)))))
91, 1, 5subdid 8556 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))))
105, 1, 5subdid 8556 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵) · (𝐴 − (i · 𝐵))) = (((i · 𝐵) · 𝐴) − ((i · 𝐵) · (i · 𝐵))))
11 mulcom 8124 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 · (i · 𝐵)) = ((i · 𝐵) · 𝐴))
124, 11sylan2 286 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (i · 𝐵)) = ((i · 𝐵) · 𝐴))
13 ixi 8726 . . . . . . . . . 10 (i · i) = -1
1413oveq1i 6010 . . . . . . . . 9 ((i · i) · (𝐵 · 𝐵)) = (-1 · (𝐵 · 𝐵))
15 mulcl 8122 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · 𝐵) ∈ ℂ)
1615mulm1d 8552 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · (𝐵 · 𝐵)) = -(𝐵 · 𝐵))
1714, 16eqtr2id 2275 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · i) · (𝐵 · 𝐵)))
18 mul4 8274 . . . . . . . . 9 (((i ∈ ℂ ∧ i ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((i · i) · (𝐵 · 𝐵)) = ((i · 𝐵) · (i · 𝐵)))
192, 2, 18mpanl12 436 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · (𝐵 · 𝐵)) = ((i · 𝐵) · (i · 𝐵)))
2017, 19eqtrd 2262 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2120anidms 397 . . . . . 6 (𝐵 ∈ ℂ → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2221adantl 277 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2312, 22oveq12d 6018 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵)) = (((i · 𝐵) · 𝐴) − ((i · 𝐵) · (i · 𝐵))))
2410, 23eqtr4d 2265 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵) · (𝐴 − (i · 𝐵))) = ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵)))
259, 24oveq12d 6018 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐴 − (i · 𝐵))) + ((i · 𝐵) · (𝐴 − (i · 𝐵)))) = (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))))
26 mulcl 8122 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
2726anidms 397 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 𝐴) ∈ ℂ)
2827adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
29 mulcl 8122 . . . . 5 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 · (i · 𝐵)) ∈ ℂ)
304, 29sylan2 286 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (i · 𝐵)) ∈ ℂ)
3115negcld 8440 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) ∈ ℂ)
3231anidms 397 . . . . 5 (𝐵 ∈ ℂ → -(𝐵 · 𝐵) ∈ ℂ)
3332adantl 277 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) ∈ ℂ)
3428, 30, 33npncand 8477 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))) = ((𝐴 · 𝐴) − -(𝐵 · 𝐵)))
3515anidms 397 . . . 4 (𝐵 ∈ ℂ → (𝐵 · 𝐵) ∈ ℂ)
36 subneg 8391 . . . 4 (((𝐴 · 𝐴) ∈ ℂ ∧ (𝐵 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐴) − -(𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3727, 35, 36syl2an 289 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐴) − -(𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3834, 37eqtrd 2262 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
398, 25, 383eqtrd 2266 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  (class class class)co 6000  cc 7993  1c1 7996  ici 7997   + caddc 7998   · cmul 8000  cmin 8313  -cneg 8314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-neg 8316
This theorem is referenced by:  recexap  8796
  Copyright terms: Public domain W3C validator