Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intqfrac2 | GIF version |
Description: Decompose a real into integer and fractional parts. (Contributed by Jim Kingdon, 18-Oct-2021.) |
Ref | Expression |
---|---|
intqfrac2.1 | ⊢ 𝑍 = (⌊‘𝐴) |
intqfrac2.2 | ⊢ 𝐹 = (𝐴 − 𝑍) |
Ref | Expression |
---|---|
intqfrac2 | ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qfracge0 10237 | . . 3 ⊢ (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴))) | |
2 | intqfrac2.2 | . . . 4 ⊢ 𝐹 = (𝐴 − 𝑍) | |
3 | intqfrac2.1 | . . . . 5 ⊢ 𝑍 = (⌊‘𝐴) | |
4 | 3 | oveq2i 5864 | . . . 4 ⊢ (𝐴 − 𝑍) = (𝐴 − (⌊‘𝐴)) |
5 | 2, 4 | eqtri 2191 | . . 3 ⊢ 𝐹 = (𝐴 − (⌊‘𝐴)) |
6 | 1, 5 | breqtrrdi 4031 | . 2 ⊢ (𝐴 ∈ ℚ → 0 ≤ 𝐹) |
7 | qfraclt1 10236 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1) | |
8 | 5, 7 | eqbrtrid 4024 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐹 < 1) |
9 | 2 | oveq2i 5864 | . . 3 ⊢ (𝑍 + 𝐹) = (𝑍 + (𝐴 − 𝑍)) |
10 | flqcl 10229 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
11 | 3, 10 | eqeltrid 2257 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝑍 ∈ ℤ) |
12 | 11 | zcnd 9335 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝑍 ∈ ℂ) |
13 | qcn 9593 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
14 | 12, 13 | pncan3d 8233 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝑍 + (𝐴 − 𝑍)) = 𝐴) |
15 | 9, 14 | eqtr2id 2216 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐴 = (𝑍 + 𝐹)) |
16 | 6, 8, 15 | 3jca 1172 | 1 ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 < clt 7954 ≤ cle 7955 − cmin 8090 ℤcz 9212 ℚcq 9578 ⌊cfl 10224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-q 9579 df-rp 9611 df-fl 10226 |
This theorem is referenced by: intfracq 10276 flqdiv 10277 |
Copyright terms: Public domain | W3C validator |