Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intqfrac2 | GIF version |
Description: Decompose a real into integer and fractional parts. (Contributed by Jim Kingdon, 18-Oct-2021.) |
Ref | Expression |
---|---|
intqfrac2.1 | ⊢ 𝑍 = (⌊‘𝐴) |
intqfrac2.2 | ⊢ 𝐹 = (𝐴 − 𝑍) |
Ref | Expression |
---|---|
intqfrac2 | ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qfracge0 10212 | . . 3 ⊢ (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴))) | |
2 | intqfrac2.2 | . . . 4 ⊢ 𝐹 = (𝐴 − 𝑍) | |
3 | intqfrac2.1 | . . . . 5 ⊢ 𝑍 = (⌊‘𝐴) | |
4 | 3 | oveq2i 5852 | . . . 4 ⊢ (𝐴 − 𝑍) = (𝐴 − (⌊‘𝐴)) |
5 | 2, 4 | eqtri 2186 | . . 3 ⊢ 𝐹 = (𝐴 − (⌊‘𝐴)) |
6 | 1, 5 | breqtrrdi 4023 | . 2 ⊢ (𝐴 ∈ ℚ → 0 ≤ 𝐹) |
7 | qfraclt1 10211 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1) | |
8 | 5, 7 | eqbrtrid 4016 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐹 < 1) |
9 | 2 | oveq2i 5852 | . . 3 ⊢ (𝑍 + 𝐹) = (𝑍 + (𝐴 − 𝑍)) |
10 | flqcl 10204 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
11 | 3, 10 | eqeltrid 2252 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝑍 ∈ ℤ) |
12 | 11 | zcnd 9310 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝑍 ∈ ℂ) |
13 | qcn 9568 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
14 | 12, 13 | pncan3d 8208 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝑍 + (𝐴 − 𝑍)) = 𝐴) |
15 | 9, 14 | eqtr2id 2211 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐴 = (𝑍 + 𝐹)) |
16 | 6, 8, 15 | 3jca 1167 | 1 ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 ‘cfv 5187 (class class class)co 5841 0cc0 7749 1c1 7750 + caddc 7752 < clt 7929 ≤ cle 7930 − cmin 8065 ℤcz 9187 ℚcq 9553 ⌊cfl 10199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-n0 9111 df-z 9188 df-q 9554 df-rp 9586 df-fl 10201 |
This theorem is referenced by: intfracq 10251 flqdiv 10252 |
Copyright terms: Public domain | W3C validator |