ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intqfrac2 GIF version

Theorem intqfrac2 10123
Description: Decompose a real into integer and fractional parts. (Contributed by Jim Kingdon, 18-Oct-2021.)
Hypotheses
Ref Expression
intqfrac2.1 𝑍 = (⌊‘𝐴)
intqfrac2.2 𝐹 = (𝐴𝑍)
Assertion
Ref Expression
intqfrac2 (𝐴 ∈ ℚ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))

Proof of Theorem intqfrac2
StepHypRef Expression
1 qfracge0 10085 . . 3 (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴)))
2 intqfrac2.2 . . . 4 𝐹 = (𝐴𝑍)
3 intqfrac2.1 . . . . 5 𝑍 = (⌊‘𝐴)
43oveq2i 5793 . . . 4 (𝐴𝑍) = (𝐴 − (⌊‘𝐴))
52, 4eqtri 2161 . . 3 𝐹 = (𝐴 − (⌊‘𝐴))
61, 5breqtrrdi 3978 . 2 (𝐴 ∈ ℚ → 0 ≤ 𝐹)
7 qfraclt1 10084 . . 3 (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1)
85, 7eqbrtrid 3971 . 2 (𝐴 ∈ ℚ → 𝐹 < 1)
92oveq2i 5793 . . 3 (𝑍 + 𝐹) = (𝑍 + (𝐴𝑍))
10 flqcl 10077 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
113, 10eqeltrid 2227 . . . . 5 (𝐴 ∈ ℚ → 𝑍 ∈ ℤ)
1211zcnd 9198 . . . 4 (𝐴 ∈ ℚ → 𝑍 ∈ ℂ)
13 qcn 9453 . . . 4 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
1412, 13pncan3d 8100 . . 3 (𝐴 ∈ ℚ → (𝑍 + (𝐴𝑍)) = 𝐴)
159, 14syl5req 2186 . 2 (𝐴 ∈ ℚ → 𝐴 = (𝑍 + 𝐹))
166, 8, 153jca 1162 1 (𝐴 ∈ ℚ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 963   = wceq 1332  wcel 1481   class class class wbr 3937  cfv 5131  (class class class)co 5782  0cc0 7644  1c1 7645   + caddc 7647   < clt 7824  cle 7825  cmin 7957  cz 9078  cq 9438  cfl 10072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-fl 10074
This theorem is referenced by:  intfracq  10124  flqdiv  10125
  Copyright terms: Public domain W3C validator