| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intqfrac2 | GIF version | ||
| Description: Decompose a real into integer and fractional parts. (Contributed by Jim Kingdon, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| intqfrac2.1 | ⊢ 𝑍 = (⌊‘𝐴) |
| intqfrac2.2 | ⊢ 𝐹 = (𝐴 − 𝑍) |
| Ref | Expression |
|---|---|
| intqfrac2 | ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qfracge0 10388 | . . 3 ⊢ (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴))) | |
| 2 | intqfrac2.2 | . . . 4 ⊢ 𝐹 = (𝐴 − 𝑍) | |
| 3 | intqfrac2.1 | . . . . 5 ⊢ 𝑍 = (⌊‘𝐴) | |
| 4 | 3 | oveq2i 5936 | . . . 4 ⊢ (𝐴 − 𝑍) = (𝐴 − (⌊‘𝐴)) |
| 5 | 2, 4 | eqtri 2217 | . . 3 ⊢ 𝐹 = (𝐴 − (⌊‘𝐴)) |
| 6 | 1, 5 | breqtrrdi 4076 | . 2 ⊢ (𝐴 ∈ ℚ → 0 ≤ 𝐹) |
| 7 | qfraclt1 10387 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1) | |
| 8 | 5, 7 | eqbrtrid 4069 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐹 < 1) |
| 9 | 2 | oveq2i 5936 | . . 3 ⊢ (𝑍 + 𝐹) = (𝑍 + (𝐴 − 𝑍)) |
| 10 | flqcl 10380 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
| 11 | 3, 10 | eqeltrid 2283 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝑍 ∈ ℤ) |
| 12 | 11 | zcnd 9466 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝑍 ∈ ℂ) |
| 13 | qcn 9725 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
| 14 | 12, 13 | pncan3d 8357 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝑍 + (𝐴 − 𝑍)) = 𝐴) |
| 15 | 9, 14 | eqtr2id 2242 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐴 = (𝑍 + 𝐹)) |
| 16 | 6, 8, 15 | 3jca 1179 | 1 ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 0cc0 7896 1c1 7897 + caddc 7899 < clt 8078 ≤ cle 8079 − cmin 8214 ℤcz 9343 ℚcq 9710 ⌊cfl 10375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-q 9711 df-rp 9746 df-fl 10377 |
| This theorem is referenced by: intfracq 10429 flqdiv 10430 |
| Copyright terms: Public domain | W3C validator |