| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intqfrac2 | GIF version | ||
| Description: Decompose a real into integer and fractional parts. (Contributed by Jim Kingdon, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| intqfrac2.1 | ⊢ 𝑍 = (⌊‘𝐴) |
| intqfrac2.2 | ⊢ 𝐹 = (𝐴 − 𝑍) |
| Ref | Expression |
|---|---|
| intqfrac2 | ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qfracge0 10441 | . . 3 ⊢ (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴))) | |
| 2 | intqfrac2.2 | . . . 4 ⊢ 𝐹 = (𝐴 − 𝑍) | |
| 3 | intqfrac2.1 | . . . . 5 ⊢ 𝑍 = (⌊‘𝐴) | |
| 4 | 3 | oveq2i 5967 | . . . 4 ⊢ (𝐴 − 𝑍) = (𝐴 − (⌊‘𝐴)) |
| 5 | 2, 4 | eqtri 2227 | . . 3 ⊢ 𝐹 = (𝐴 − (⌊‘𝐴)) |
| 6 | 1, 5 | breqtrrdi 4092 | . 2 ⊢ (𝐴 ∈ ℚ → 0 ≤ 𝐹) |
| 7 | qfraclt1 10440 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1) | |
| 8 | 5, 7 | eqbrtrid 4085 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐹 < 1) |
| 9 | 2 | oveq2i 5967 | . . 3 ⊢ (𝑍 + 𝐹) = (𝑍 + (𝐴 − 𝑍)) |
| 10 | flqcl 10433 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
| 11 | 3, 10 | eqeltrid 2293 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝑍 ∈ ℤ) |
| 12 | 11 | zcnd 9511 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝑍 ∈ ℂ) |
| 13 | qcn 9770 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
| 14 | 12, 13 | pncan3d 8401 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝑍 + (𝐴 − 𝑍)) = 𝐴) |
| 15 | 9, 14 | eqtr2id 2252 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐴 = (𝑍 + 𝐹)) |
| 16 | 6, 8, 15 | 3jca 1180 | 1 ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4050 ‘cfv 5279 (class class class)co 5956 0cc0 7940 1c1 7941 + caddc 7943 < clt 8122 ≤ cle 8123 − cmin 8258 ℤcz 9387 ℚcq 9755 ⌊cfl 10428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-po 4350 df-iso 4351 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-n0 9311 df-z 9388 df-q 9756 df-rp 9791 df-fl 10430 |
| This theorem is referenced by: intfracq 10482 flqdiv 10483 |
| Copyright terms: Public domain | W3C validator |