| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intqfrac2 | GIF version | ||
| Description: Decompose a real into integer and fractional parts. (Contributed by Jim Kingdon, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| intqfrac2.1 | ⊢ 𝑍 = (⌊‘𝐴) |
| intqfrac2.2 | ⊢ 𝐹 = (𝐴 − 𝑍) |
| Ref | Expression |
|---|---|
| intqfrac2 | ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qfracge0 10496 | . . 3 ⊢ (𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴))) | |
| 2 | intqfrac2.2 | . . . 4 ⊢ 𝐹 = (𝐴 − 𝑍) | |
| 3 | intqfrac2.1 | . . . . 5 ⊢ 𝑍 = (⌊‘𝐴) | |
| 4 | 3 | oveq2i 6011 | . . . 4 ⊢ (𝐴 − 𝑍) = (𝐴 − (⌊‘𝐴)) |
| 5 | 2, 4 | eqtri 2250 | . . 3 ⊢ 𝐹 = (𝐴 − (⌊‘𝐴)) |
| 6 | 1, 5 | breqtrrdi 4124 | . 2 ⊢ (𝐴 ∈ ℚ → 0 ≤ 𝐹) |
| 7 | qfraclt1 10495 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1) | |
| 8 | 5, 7 | eqbrtrid 4117 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐹 < 1) |
| 9 | 2 | oveq2i 6011 | . . 3 ⊢ (𝑍 + 𝐹) = (𝑍 + (𝐴 − 𝑍)) |
| 10 | flqcl 10488 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
| 11 | 3, 10 | eqeltrid 2316 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝑍 ∈ ℤ) |
| 12 | 11 | zcnd 9566 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝑍 ∈ ℂ) |
| 13 | qcn 9825 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
| 14 | 12, 13 | pncan3d 8456 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝑍 + (𝐴 − 𝑍)) = 𝐴) |
| 15 | 9, 14 | eqtr2id 2275 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐴 = (𝑍 + 𝐹)) |
| 16 | 6, 8, 15 | 3jca 1201 | 1 ⊢ (𝐴 ∈ ℚ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 < clt 8177 ≤ cle 8178 − cmin 8313 ℤcz 9442 ℚcq 9810 ⌊cfl 10483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-n0 9366 df-z 9443 df-q 9811 df-rp 9846 df-fl 10485 |
| This theorem is referenced by: intfracq 10537 flqdiv 10538 |
| Copyright terms: Public domain | W3C validator |