Step | Hyp | Ref
| Expression |
1 | | grp1.m |
. . . . 5
β’ π = {β¨(Baseβndx),
{πΌ}β©,
β¨(+gβndx), {β¨β¨πΌ, πΌβ©, πΌβ©}β©} |
2 | 1 | grp1 12981 |
. . . 4
β’ (πΌ β π β π β Grp) |
3 | | eqid 2177 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
4 | | eqid 2177 |
. . . . 5
β’
(invgβπ) = (invgβπ) |
5 | 3, 4 | grpinvf 12925 |
. . . 4
β’ (π β Grp β
(invgβπ):(Baseβπ)βΆ(Baseβπ)) |
6 | 2, 5 | syl 14 |
. . 3
β’ (πΌ β π β (invgβπ):(Baseβπ)βΆ(Baseβπ)) |
7 | | snexg 4186 |
. . . . 5
β’ (πΌ β π β {πΌ} β V) |
8 | | opexg 4230 |
. . . . . . . 8
β’ ((πΌ β π β§ πΌ β π) β β¨πΌ, πΌβ© β V) |
9 | 8 | anidms 397 |
. . . . . . 7
β’ (πΌ β π β β¨πΌ, πΌβ© β V) |
10 | | opexg 4230 |
. . . . . . 7
β’
((β¨πΌ, πΌβ© β V β§ πΌ β π) β β¨β¨πΌ, πΌβ©, πΌβ© β V) |
11 | 9, 10 | mpancom 422 |
. . . . . 6
β’ (πΌ β π β β¨β¨πΌ, πΌβ©, πΌβ© β V) |
12 | | snexg 4186 |
. . . . . 6
β’
(β¨β¨πΌ,
πΌβ©, πΌβ© β V β {β¨β¨πΌ, πΌβ©, πΌβ©} β V) |
13 | 11, 12 | syl 14 |
. . . . 5
β’ (πΌ β π β {β¨β¨πΌ, πΌβ©, πΌβ©} β V) |
14 | 1 | grpbaseg 12587 |
. . . . 5
β’ (({πΌ} β V β§
{β¨β¨πΌ, πΌβ©, πΌβ©} β V) β {πΌ} = (Baseβπ)) |
15 | 7, 13, 14 | syl2anc 411 |
. . . 4
β’ (πΌ β π β {πΌ} = (Baseβπ)) |
16 | 15, 15 | feq23d 5363 |
. . 3
β’ (πΌ β π β ((invgβπ):{πΌ}βΆ{πΌ} β (invgβπ):(Baseβπ)βΆ(Baseβπ))) |
17 | 6, 16 | mpbird 167 |
. 2
β’ (πΌ β π β (invgβπ):{πΌ}βΆ{πΌ}) |
18 | | fsng 5691 |
. . . 4
β’ ((πΌ β π β§ πΌ β π) β ((invgβπ):{πΌ}βΆ{πΌ} β (invgβπ) = {β¨πΌ, πΌβ©})) |
19 | 18 | anidms 397 |
. . 3
β’ (πΌ β π β ((invgβπ):{πΌ}βΆ{πΌ} β (invgβπ) = {β¨πΌ, πΌβ©})) |
20 | | simpr 110 |
. . . . 5
β’ ((πΌ β π β§ (invgβπ) = {β¨πΌ, πΌβ©}) β (invgβπ) = {β¨πΌ, πΌβ©}) |
21 | | restidsing 4965 |
. . . . . . 7
β’ ( I
βΎ {πΌ}) = ({πΌ} Γ {πΌ}) |
22 | | xpsng 5693 |
. . . . . . . 8
β’ ((πΌ β π β§ πΌ β π) β ({πΌ} Γ {πΌ}) = {β¨πΌ, πΌβ©}) |
23 | 22 | anidms 397 |
. . . . . . 7
β’ (πΌ β π β ({πΌ} Γ {πΌ}) = {β¨πΌ, πΌβ©}) |
24 | 21, 23 | eqtr2id 2223 |
. . . . . 6
β’ (πΌ β π β {β¨πΌ, πΌβ©} = ( I βΎ {πΌ})) |
25 | 24 | adantr 276 |
. . . . 5
β’ ((πΌ β π β§ (invgβπ) = {β¨πΌ, πΌβ©}) β {β¨πΌ, πΌβ©} = ( I βΎ {πΌ})) |
26 | 20, 25 | eqtrd 2210 |
. . . 4
β’ ((πΌ β π β§ (invgβπ) = {β¨πΌ, πΌβ©}) β (invgβπ) = ( I βΎ {πΌ})) |
27 | 26 | ex 115 |
. . 3
β’ (πΌ β π β ((invgβπ) = {β¨πΌ, πΌβ©} β (invgβπ) = ( I βΎ {πΌ}))) |
28 | 19, 27 | sylbid 150 |
. 2
β’ (πΌ β π β ((invgβπ):{πΌ}βΆ{πΌ} β (invgβπ) = ( I βΎ {πΌ}))) |
29 | 17, 28 | mpd 13 |
1
β’ (πΌ β π β (invgβπ) = ( I βΎ {πΌ})) |