ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grp1inv GIF version

Theorem grp1inv 13066
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
Hypothesis
Ref Expression
grp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
grp1inv (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))

Proof of Theorem grp1inv
StepHypRef Expression
1 grp1.m . . . . 5 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 13065 . . . 4 (𝐼𝑉𝑀 ∈ Grp)
3 eqid 2189 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
4 eqid 2189 . . . . 5 (invg𝑀) = (invg𝑀)
53, 4grpinvf 13006 . . . 4 (𝑀 ∈ Grp → (invg𝑀):(Base‘𝑀)⟶(Base‘𝑀))
62, 5syl 14 . . 3 (𝐼𝑉 → (invg𝑀):(Base‘𝑀)⟶(Base‘𝑀))
7 snexg 4202 . . . . 5 (𝐼𝑉 → {𝐼} ∈ V)
8 opexg 4246 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
98anidms 397 . . . . . . 7 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
10 opexg 4246 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
119, 10mpancom 422 . . . . . 6 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
12 snexg 4202 . . . . . 6 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
1311, 12syl 14 . . . . 5 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
141grpbaseg 12641 . . . . 5 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
157, 13, 14syl2anc 411 . . . 4 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
1615, 15feq23d 5380 . . 3 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀):(Base‘𝑀)⟶(Base‘𝑀)))
176, 16mpbird 167 . 2 (𝐼𝑉 → (invg𝑀):{𝐼}⟶{𝐼})
18 fsng 5710 . . . 4 ((𝐼𝑉𝐼𝑉) → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀) = {⟨𝐼, 𝐼⟩}))
1918anidms 397 . . 3 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀) = {⟨𝐼, 𝐼⟩}))
20 simpr 110 . . . . 5 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → (invg𝑀) = {⟨𝐼, 𝐼⟩})
21 restidsing 4981 . . . . . . 7 ( I ↾ {𝐼}) = ({𝐼} × {𝐼})
22 xpsng 5712 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
2322anidms 397 . . . . . . 7 (𝐼𝑉 → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
2421, 23eqtr2id 2235 . . . . . 6 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
2524adantr 276 . . . . 5 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
2620, 25eqtrd 2222 . . . 4 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → (invg𝑀) = ( I ↾ {𝐼}))
2726ex 115 . . 3 (𝐼𝑉 → ((invg𝑀) = {⟨𝐼, 𝐼⟩} → (invg𝑀) = ( I ↾ {𝐼})))
2819, 27sylbid 150 . 2 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} → (invg𝑀) = ( I ↾ {𝐼})))
2917, 28mpd 13 1 (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  Vcvv 2752  {csn 3607  {cpr 3608  cop 3610   I cid 4306   × cxp 4642  cres 4646  wf 5231  cfv 5235  ndxcnx 12512  Basecbs 12515  +gcplusg 12592  Grpcgrp 12960  invgcminusg 12961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator