| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grp1inv | GIF version | ||
| Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.) |
| Ref | Expression |
|---|---|
| grp1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
| Ref | Expression |
|---|---|
| grp1inv | ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grp1.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
| 2 | 1 | grp1 13380 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
| 3 | eqid 2204 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 4 | eqid 2204 | . . . . 5 ⊢ (invg‘𝑀) = (invg‘𝑀) | |
| 5 | 3, 4 | grpinvf 13321 | . . . 4 ⊢ (𝑀 ∈ Grp → (invg‘𝑀):(Base‘𝑀)⟶(Base‘𝑀)) |
| 6 | 2, 5 | syl 14 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀):(Base‘𝑀)⟶(Base‘𝑀)) |
| 7 | snexg 4227 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → {𝐼} ∈ V) | |
| 8 | opexg 4271 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → 〈𝐼, 𝐼〉 ∈ V) | |
| 9 | 8 | anidms 397 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 〈𝐼, 𝐼〉 ∈ V) |
| 10 | opexg 4271 | . . . . . . 7 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → 〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V) | |
| 11 | 9, 10 | mpancom 422 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V) |
| 12 | snexg 4227 | . . . . . 6 ⊢ (〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) | |
| 13 | 11, 12 | syl 14 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) |
| 14 | 1 | grpbaseg 12901 | . . . . 5 ⊢ (({𝐼} ∈ V ∧ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) → {𝐼} = (Base‘𝑀)) |
| 15 | 7, 13, 14 | syl2anc 411 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {𝐼} = (Base‘𝑀)) |
| 16 | 15, 15 | feq23d 5420 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀):(Base‘𝑀)⟶(Base‘𝑀))) |
| 17 | 6, 16 | mpbird 167 | . 2 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀):{𝐼}⟶{𝐼}) |
| 18 | fsng 5752 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀) = {〈𝐼, 𝐼〉})) | |
| 19 | 18 | anidms 397 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀) = {〈𝐼, 𝐼〉})) |
| 20 | simpr 110 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → (invg‘𝑀) = {〈𝐼, 𝐼〉}) | |
| 21 | restidsing 5014 | . . . . . . 7 ⊢ ( I ↾ {𝐼}) = ({𝐼} × {𝐼}) | |
| 22 | xpsng 5754 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) | |
| 23 | 22 | anidms 397 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) |
| 24 | 21, 23 | eqtr2id 2250 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
| 25 | 24 | adantr 276 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
| 26 | 20, 25 | eqtrd 2237 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → (invg‘𝑀) = ( I ↾ {𝐼})) |
| 27 | 26 | ex 115 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀) = {〈𝐼, 𝐼〉} → (invg‘𝑀) = ( I ↾ {𝐼}))) |
| 28 | 19, 27 | sylbid 150 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} → (invg‘𝑀) = ( I ↾ {𝐼}))) |
| 29 | 17, 28 | mpd 13 | 1 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 {csn 3632 {cpr 3633 〈cop 3635 I cid 4334 × cxp 4672 ↾ cres 4676 ⟶wf 5266 ‘cfv 5270 ndxcnx 12771 Basecbs 12774 +gcplusg 12851 Grpcgrp 13274 invgcminusg 13275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |