| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grp1inv | GIF version | ||
| Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.) |
| Ref | Expression |
|---|---|
| grp1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
| Ref | Expression |
|---|---|
| grp1inv | ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grp1.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
| 2 | 1 | grp1 13238 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
| 3 | eqid 2196 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 4 | eqid 2196 | . . . . 5 ⊢ (invg‘𝑀) = (invg‘𝑀) | |
| 5 | 3, 4 | grpinvf 13179 | . . . 4 ⊢ (𝑀 ∈ Grp → (invg‘𝑀):(Base‘𝑀)⟶(Base‘𝑀)) |
| 6 | 2, 5 | syl 14 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀):(Base‘𝑀)⟶(Base‘𝑀)) |
| 7 | snexg 4217 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → {𝐼} ∈ V) | |
| 8 | opexg 4261 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → 〈𝐼, 𝐼〉 ∈ V) | |
| 9 | 8 | anidms 397 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 〈𝐼, 𝐼〉 ∈ V) |
| 10 | opexg 4261 | . . . . . . 7 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → 〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V) | |
| 11 | 9, 10 | mpancom 422 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V) |
| 12 | snexg 4217 | . . . . . 6 ⊢ (〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) | |
| 13 | 11, 12 | syl 14 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) |
| 14 | 1 | grpbaseg 12804 | . . . . 5 ⊢ (({𝐼} ∈ V ∧ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) → {𝐼} = (Base‘𝑀)) |
| 15 | 7, 13, 14 | syl2anc 411 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {𝐼} = (Base‘𝑀)) |
| 16 | 15, 15 | feq23d 5403 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀):(Base‘𝑀)⟶(Base‘𝑀))) |
| 17 | 6, 16 | mpbird 167 | . 2 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀):{𝐼}⟶{𝐼}) |
| 18 | fsng 5735 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀) = {〈𝐼, 𝐼〉})) | |
| 19 | 18 | anidms 397 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀) = {〈𝐼, 𝐼〉})) |
| 20 | simpr 110 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → (invg‘𝑀) = {〈𝐼, 𝐼〉}) | |
| 21 | restidsing 5002 | . . . . . . 7 ⊢ ( I ↾ {𝐼}) = ({𝐼} × {𝐼}) | |
| 22 | xpsng 5737 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) | |
| 23 | 22 | anidms 397 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) |
| 24 | 21, 23 | eqtr2id 2242 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
| 25 | 24 | adantr 276 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
| 26 | 20, 25 | eqtrd 2229 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → (invg‘𝑀) = ( I ↾ {𝐼})) |
| 27 | 26 | ex 115 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀) = {〈𝐼, 𝐼〉} → (invg‘𝑀) = ( I ↾ {𝐼}))) |
| 28 | 19, 27 | sylbid 150 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} → (invg‘𝑀) = ( I ↾ {𝐼}))) |
| 29 | 17, 28 | mpd 13 | 1 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3622 {cpr 3623 〈cop 3625 I cid 4323 × cxp 4661 ↾ cres 4665 ⟶wf 5254 ‘cfv 5258 ndxcnx 12675 Basecbs 12678 +gcplusg 12755 Grpcgrp 13132 invgcminusg 13133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |