ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grp1inv GIF version

Theorem grp1inv 13381
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
Hypothesis
Ref Expression
grp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
grp1inv (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))

Proof of Theorem grp1inv
StepHypRef Expression
1 grp1.m . . . . 5 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 13380 . . . 4 (𝐼𝑉𝑀 ∈ Grp)
3 eqid 2204 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
4 eqid 2204 . . . . 5 (invg𝑀) = (invg𝑀)
53, 4grpinvf 13321 . . . 4 (𝑀 ∈ Grp → (invg𝑀):(Base‘𝑀)⟶(Base‘𝑀))
62, 5syl 14 . . 3 (𝐼𝑉 → (invg𝑀):(Base‘𝑀)⟶(Base‘𝑀))
7 snexg 4227 . . . . 5 (𝐼𝑉 → {𝐼} ∈ V)
8 opexg 4271 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
98anidms 397 . . . . . . 7 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
10 opexg 4271 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
119, 10mpancom 422 . . . . . 6 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
12 snexg 4227 . . . . . 6 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
1311, 12syl 14 . . . . 5 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
141grpbaseg 12901 . . . . 5 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
157, 13, 14syl2anc 411 . . . 4 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
1615, 15feq23d 5420 . . 3 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀):(Base‘𝑀)⟶(Base‘𝑀)))
176, 16mpbird 167 . 2 (𝐼𝑉 → (invg𝑀):{𝐼}⟶{𝐼})
18 fsng 5752 . . . 4 ((𝐼𝑉𝐼𝑉) → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀) = {⟨𝐼, 𝐼⟩}))
1918anidms 397 . . 3 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀) = {⟨𝐼, 𝐼⟩}))
20 simpr 110 . . . . 5 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → (invg𝑀) = {⟨𝐼, 𝐼⟩})
21 restidsing 5014 . . . . . . 7 ( I ↾ {𝐼}) = ({𝐼} × {𝐼})
22 xpsng 5754 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
2322anidms 397 . . . . . . 7 (𝐼𝑉 → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
2421, 23eqtr2id 2250 . . . . . 6 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
2524adantr 276 . . . . 5 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
2620, 25eqtrd 2237 . . . 4 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → (invg𝑀) = ( I ↾ {𝐼}))
2726ex 115 . . 3 (𝐼𝑉 → ((invg𝑀) = {⟨𝐼, 𝐼⟩} → (invg𝑀) = ( I ↾ {𝐼})))
2819, 27sylbid 150 . 2 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} → (invg𝑀) = ( I ↾ {𝐼})))
2917, 28mpd 13 1 (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  Vcvv 2771  {csn 3632  {cpr 3633  cop 3635   I cid 4334   × cxp 4672  cres 4676  wf 5266  cfv 5270  ndxcnx 12771  Basecbs 12774  +gcplusg 12851  Grpcgrp 13274  invgcminusg 13275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator