![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grp1inv | GIF version |
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.) |
Ref | Expression |
---|---|
grp1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
Ref | Expression |
---|---|
grp1inv | ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grp1.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
2 | 1 | grp1 13065 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
3 | eqid 2189 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
4 | eqid 2189 | . . . . 5 ⊢ (invg‘𝑀) = (invg‘𝑀) | |
5 | 3, 4 | grpinvf 13006 | . . . 4 ⊢ (𝑀 ∈ Grp → (invg‘𝑀):(Base‘𝑀)⟶(Base‘𝑀)) |
6 | 2, 5 | syl 14 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀):(Base‘𝑀)⟶(Base‘𝑀)) |
7 | snexg 4202 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → {𝐼} ∈ V) | |
8 | opexg 4246 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → 〈𝐼, 𝐼〉 ∈ V) | |
9 | 8 | anidms 397 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 〈𝐼, 𝐼〉 ∈ V) |
10 | opexg 4246 | . . . . . . 7 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → 〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V) | |
11 | 9, 10 | mpancom 422 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V) |
12 | snexg 4202 | . . . . . 6 ⊢ (〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) | |
13 | 11, 12 | syl 14 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) |
14 | 1 | grpbaseg 12641 | . . . . 5 ⊢ (({𝐼} ∈ V ∧ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) → {𝐼} = (Base‘𝑀)) |
15 | 7, 13, 14 | syl2anc 411 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {𝐼} = (Base‘𝑀)) |
16 | 15, 15 | feq23d 5380 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀):(Base‘𝑀)⟶(Base‘𝑀))) |
17 | 6, 16 | mpbird 167 | . 2 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀):{𝐼}⟶{𝐼}) |
18 | fsng 5710 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀) = {〈𝐼, 𝐼〉})) | |
19 | 18 | anidms 397 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀) = {〈𝐼, 𝐼〉})) |
20 | simpr 110 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → (invg‘𝑀) = {〈𝐼, 𝐼〉}) | |
21 | restidsing 4981 | . . . . . . 7 ⊢ ( I ↾ {𝐼}) = ({𝐼} × {𝐼}) | |
22 | xpsng 5712 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) | |
23 | 22 | anidms 397 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) |
24 | 21, 23 | eqtr2id 2235 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
25 | 24 | adantr 276 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
26 | 20, 25 | eqtrd 2222 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → (invg‘𝑀) = ( I ↾ {𝐼})) |
27 | 26 | ex 115 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀) = {〈𝐼, 𝐼〉} → (invg‘𝑀) = ( I ↾ {𝐼}))) |
28 | 19, 27 | sylbid 150 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} → (invg‘𝑀) = ( I ↾ {𝐼}))) |
29 | 17, 28 | mpd 13 | 1 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 Vcvv 2752 {csn 3607 {cpr 3608 〈cop 3610 I cid 4306 × cxp 4642 ↾ cres 4646 ⟶wf 5231 ‘cfv 5235 ndxcnx 12512 Basecbs 12515 +gcplusg 12592 Grpcgrp 12960 invgcminusg 12961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-ndx 12518 df-slot 12519 df-base 12521 df-plusg 12605 df-0g 12766 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |