ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0supp GIF version

Theorem nn0supp 9417
Description: Two ways to write the support of a function on 0. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
nn0supp (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))

Proof of Theorem nn0supp
StepHypRef Expression
1 dfn2 9378 . . . 4 ℕ = (ℕ0 ∖ {0})
2 invdif 3446 . . . 4 (ℕ0 ∩ (V ∖ {0})) = (ℕ0 ∖ {0})
31, 2eqtr4i 2253 . . 3 ℕ = (ℕ0 ∩ (V ∖ {0}))
43imaeq2i 5065 . 2 (𝐹 “ ℕ) = (𝐹 “ (ℕ0 ∩ (V ∖ {0})))
5 ffun 5475 . . . 4 (𝐹:𝐼⟶ℕ0 → Fun 𝐹)
6 inpreima 5760 . . . 4 (Fun 𝐹 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))))
75, 6syl 14 . . 3 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))))
8 cnvimass 5090 . . . . 5 (𝐹 “ (V ∖ {0})) ⊆ dom 𝐹
9 fdm 5478 . . . . . 6 (𝐹:𝐼⟶ℕ0 → dom 𝐹 = 𝐼)
10 fimacnv 5763 . . . . . 6 (𝐹:𝐼⟶ℕ0 → (𝐹 “ ℕ0) = 𝐼)
119, 10eqtr4d 2265 . . . . 5 (𝐹:𝐼⟶ℕ0 → dom 𝐹 = (𝐹 “ ℕ0))
128, 11sseqtrid 3274 . . . 4 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) ⊆ (𝐹 “ ℕ0))
13 sseqin2 3423 . . . 4 ((𝐹 “ (V ∖ {0})) ⊆ (𝐹 “ ℕ0) ↔ ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
1412, 13sylib 122 . . 3 (𝐹:𝐼⟶ℕ0 → ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
157, 14eqtrd 2262 . 2 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
164, 15eqtr2id 2275 1 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  Vcvv 2799  cdif 3194  cin 3196  wss 3197  {csn 3666  ccnv 4717  dom cdm 4718  cima 4721  Fun wfun 5311  wf 5313  0cc0 7995  cn 9106  0cn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-inn 9107  df-n0 9366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator