![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0supp | GIF version |
Description: Two ways to write the support of a function on β0. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
nn0supp | β’ (πΉ:πΌβΆβ0 β (β‘πΉ β (V β {0})) = (β‘πΉ β β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfn2 9191 | . . . 4 β’ β = (β0 β {0}) | |
2 | invdif 3379 | . . . 4 β’ (β0 β© (V β {0})) = (β0 β {0}) | |
3 | 1, 2 | eqtr4i 2201 | . . 3 β’ β = (β0 β© (V β {0})) |
4 | 3 | imaeq2i 4970 | . 2 β’ (β‘πΉ β β) = (β‘πΉ β (β0 β© (V β {0}))) |
5 | ffun 5370 | . . . 4 β’ (πΉ:πΌβΆβ0 β Fun πΉ) | |
6 | inpreima 5644 | . . . 4 β’ (Fun πΉ β (β‘πΉ β (β0 β© (V β {0}))) = ((β‘πΉ β β0) β© (β‘πΉ β (V β {0})))) | |
7 | 5, 6 | syl 14 | . . 3 β’ (πΉ:πΌβΆβ0 β (β‘πΉ β (β0 β© (V β {0}))) = ((β‘πΉ β β0) β© (β‘πΉ β (V β {0})))) |
8 | cnvimass 4993 | . . . . 5 β’ (β‘πΉ β (V β {0})) β dom πΉ | |
9 | fdm 5373 | . . . . . 6 β’ (πΉ:πΌβΆβ0 β dom πΉ = πΌ) | |
10 | fimacnv 5647 | . . . . . 6 β’ (πΉ:πΌβΆβ0 β (β‘πΉ β β0) = πΌ) | |
11 | 9, 10 | eqtr4d 2213 | . . . . 5 β’ (πΉ:πΌβΆβ0 β dom πΉ = (β‘πΉ β β0)) |
12 | 8, 11 | sseqtrid 3207 | . . . 4 β’ (πΉ:πΌβΆβ0 β (β‘πΉ β (V β {0})) β (β‘πΉ β β0)) |
13 | sseqin2 3356 | . . . 4 β’ ((β‘πΉ β (V β {0})) β (β‘πΉ β β0) β ((β‘πΉ β β0) β© (β‘πΉ β (V β {0}))) = (β‘πΉ β (V β {0}))) | |
14 | 12, 13 | sylib 122 | . . 3 β’ (πΉ:πΌβΆβ0 β ((β‘πΉ β β0) β© (β‘πΉ β (V β {0}))) = (β‘πΉ β (V β {0}))) |
15 | 7, 14 | eqtrd 2210 | . 2 β’ (πΉ:πΌβΆβ0 β (β‘πΉ β (β0 β© (V β {0}))) = (β‘πΉ β (V β {0}))) |
16 | 4, 15 | eqtr2id 2223 | 1 β’ (πΉ:πΌβΆβ0 β (β‘πΉ β (V β {0})) = (β‘πΉ β β)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 Vcvv 2739 β cdif 3128 β© cin 3130 β wss 3131 {csn 3594 β‘ccnv 4627 dom cdm 4628 β cima 4631 Fun wfun 5212 βΆwf 5214 0cc0 7813 βcn 8921 β0cn0 9178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-inn 8922 df-n0 9179 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |