ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0supp GIF version

Theorem nn0supp 9029
Description: Two ways to write the support of a function on 0. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
nn0supp (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))

Proof of Theorem nn0supp
StepHypRef Expression
1 dfn2 8990 . . . 4 ℕ = (ℕ0 ∖ {0})
2 invdif 3318 . . . 4 (ℕ0 ∩ (V ∖ {0})) = (ℕ0 ∖ {0})
31, 2eqtr4i 2163 . . 3 ℕ = (ℕ0 ∩ (V ∖ {0}))
43imaeq2i 4879 . 2 (𝐹 “ ℕ) = (𝐹 “ (ℕ0 ∩ (V ∖ {0})))
5 ffun 5275 . . . 4 (𝐹:𝐼⟶ℕ0 → Fun 𝐹)
6 inpreima 5546 . . . 4 (Fun 𝐹 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))))
75, 6syl 14 . . 3 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))))
8 cnvimass 4902 . . . . 5 (𝐹 “ (V ∖ {0})) ⊆ dom 𝐹
9 fdm 5278 . . . . . 6 (𝐹:𝐼⟶ℕ0 → dom 𝐹 = 𝐼)
10 fimacnv 5549 . . . . . 6 (𝐹:𝐼⟶ℕ0 → (𝐹 “ ℕ0) = 𝐼)
119, 10eqtr4d 2175 . . . . 5 (𝐹:𝐼⟶ℕ0 → dom 𝐹 = (𝐹 “ ℕ0))
128, 11sseqtrid 3147 . . . 4 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) ⊆ (𝐹 “ ℕ0))
13 sseqin2 3295 . . . 4 ((𝐹 “ (V ∖ {0})) ⊆ (𝐹 “ ℕ0) ↔ ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
1412, 13sylib 121 . . 3 (𝐹:𝐼⟶ℕ0 → ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
157, 14eqtrd 2172 . 2 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
164, 15syl5req 2185 1 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  Vcvv 2686  cdif 3068  cin 3070  wss 3071  {csn 3527  ccnv 4538  dom cdm 4539  cima 4542  Fun wfun 5117  wf 5119  0cc0 7620  cn 8720  0cn0 8977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-pre-ltirr 7732  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-inn 8721  df-n0 8978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator