| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nn0supp | GIF version | ||
| Description: Two ways to write the support of a function on ℕ0. (Contributed by Mario Carneiro, 29-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| nn0supp | ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (V ∖ {0})) = (◡𝐹 “ ℕ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfn2 9262 | . . . 4 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 2 | invdif 3405 | . . . 4 ⊢ (ℕ0 ∩ (V ∖ {0})) = (ℕ0 ∖ {0}) | |
| 3 | 1, 2 | eqtr4i 2220 | . . 3 ⊢ ℕ = (ℕ0 ∩ (V ∖ {0})) | 
| 4 | 3 | imaeq2i 5007 | . 2 ⊢ (◡𝐹 “ ℕ) = (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) | 
| 5 | ffun 5410 | . . . 4 ⊢ (𝐹:𝐼⟶ℕ0 → Fun 𝐹) | |
| 6 | inpreima 5688 | . . . 4 ⊢ (Fun 𝐹 → (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0})))) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0})))) | 
| 8 | cnvimass 5032 | . . . . 5 ⊢ (◡𝐹 “ (V ∖ {0})) ⊆ dom 𝐹 | |
| 9 | fdm 5413 | . . . . . 6 ⊢ (𝐹:𝐼⟶ℕ0 → dom 𝐹 = 𝐼) | |
| 10 | fimacnv 5691 | . . . . . 6 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ ℕ0) = 𝐼) | |
| 11 | 9, 10 | eqtr4d 2232 | . . . . 5 ⊢ (𝐹:𝐼⟶ℕ0 → dom 𝐹 = (◡𝐹 “ ℕ0)) | 
| 12 | 8, 11 | sseqtrid 3233 | . . . 4 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (V ∖ {0})) ⊆ (◡𝐹 “ ℕ0)) | 
| 13 | sseqin2 3382 | . . . 4 ⊢ ((◡𝐹 “ (V ∖ {0})) ⊆ (◡𝐹 “ ℕ0) ↔ ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0}))) = (◡𝐹 “ (V ∖ {0}))) | |
| 14 | 12, 13 | sylib 122 | . . 3 ⊢ (𝐹:𝐼⟶ℕ0 → ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0}))) = (◡𝐹 “ (V ∖ {0}))) | 
| 15 | 7, 14 | eqtrd 2229 | . 2 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = (◡𝐹 “ (V ∖ {0}))) | 
| 16 | 4, 15 | eqtr2id 2242 | 1 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (V ∖ {0})) = (◡𝐹 “ ℕ)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 Vcvv 2763 ∖ cdif 3154 ∩ cin 3156 ⊆ wss 3157 {csn 3622 ◡ccnv 4662 dom cdm 4663 “ cima 4666 Fun wfun 5252 ⟶wf 5254 0cc0 7879 ℕcn 8990 ℕ0cn0 9249 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 df-n0 9250 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |