ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0supp GIF version

Theorem nn0supp 9049
Description: Two ways to write the support of a function on 0. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
nn0supp (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))

Proof of Theorem nn0supp
StepHypRef Expression
1 dfn2 9010 . . . 4 ℕ = (ℕ0 ∖ {0})
2 invdif 3319 . . . 4 (ℕ0 ∩ (V ∖ {0})) = (ℕ0 ∖ {0})
31, 2eqtr4i 2164 . . 3 ℕ = (ℕ0 ∩ (V ∖ {0}))
43imaeq2i 4883 . 2 (𝐹 “ ℕ) = (𝐹 “ (ℕ0 ∩ (V ∖ {0})))
5 ffun 5279 . . . 4 (𝐹:𝐼⟶ℕ0 → Fun 𝐹)
6 inpreima 5550 . . . 4 (Fun 𝐹 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))))
75, 6syl 14 . . 3 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))))
8 cnvimass 4906 . . . . 5 (𝐹 “ (V ∖ {0})) ⊆ dom 𝐹
9 fdm 5282 . . . . . 6 (𝐹:𝐼⟶ℕ0 → dom 𝐹 = 𝐼)
10 fimacnv 5553 . . . . . 6 (𝐹:𝐼⟶ℕ0 → (𝐹 “ ℕ0) = 𝐼)
119, 10eqtr4d 2176 . . . . 5 (𝐹:𝐼⟶ℕ0 → dom 𝐹 = (𝐹 “ ℕ0))
128, 11sseqtrid 3148 . . . 4 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) ⊆ (𝐹 “ ℕ0))
13 sseqin2 3296 . . . 4 ((𝐹 “ (V ∖ {0})) ⊆ (𝐹 “ ℕ0) ↔ ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
1412, 13sylib 121 . . 3 (𝐹:𝐼⟶ℕ0 → ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
157, 14eqtrd 2173 . 2 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
164, 15syl5req 2186 1 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  Vcvv 2687  cdif 3069  cin 3071  wss 3072  {csn 3528  ccnv 4542  dom cdm 4543  cima 4546  Fun wfun 5121  wf 5123  0cc0 7640  cn 8740  0cn0 8997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-cnex 7731  ax-resscn 7732  ax-1re 7734  ax-addrcl 7737  ax-0lt1 7746  ax-0id 7748  ax-rnegex 7749  ax-pre-ltirr 7752  ax-pre-lttrn 7754  ax-pre-ltadd 7756
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2689  df-sbc 2911  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-br 3934  df-opab 3994  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-fv 5135  df-ov 5781  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-inn 8741  df-n0 8998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator