ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0supp GIF version

Theorem nn0supp 8933
Description: Two ways to write the support of a function on 0. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
nn0supp (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))

Proof of Theorem nn0supp
StepHypRef Expression
1 dfn2 8894 . . . 4 ℕ = (ℕ0 ∖ {0})
2 invdif 3284 . . . 4 (ℕ0 ∩ (V ∖ {0})) = (ℕ0 ∖ {0})
31, 2eqtr4i 2138 . . 3 ℕ = (ℕ0 ∩ (V ∖ {0}))
43imaeq2i 4837 . 2 (𝐹 “ ℕ) = (𝐹 “ (ℕ0 ∩ (V ∖ {0})))
5 ffun 5233 . . . 4 (𝐹:𝐼⟶ℕ0 → Fun 𝐹)
6 inpreima 5500 . . . 4 (Fun 𝐹 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))))
75, 6syl 14 . . 3 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))))
8 cnvimass 4860 . . . . 5 (𝐹 “ (V ∖ {0})) ⊆ dom 𝐹
9 fdm 5236 . . . . . 6 (𝐹:𝐼⟶ℕ0 → dom 𝐹 = 𝐼)
10 fimacnv 5503 . . . . . 6 (𝐹:𝐼⟶ℕ0 → (𝐹 “ ℕ0) = 𝐼)
119, 10eqtr4d 2150 . . . . 5 (𝐹:𝐼⟶ℕ0 → dom 𝐹 = (𝐹 “ ℕ0))
128, 11sseqtrid 3113 . . . 4 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) ⊆ (𝐹 “ ℕ0))
13 sseqin2 3261 . . . 4 ((𝐹 “ (V ∖ {0})) ⊆ (𝐹 “ ℕ0) ↔ ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
1412, 13sylib 121 . . 3 (𝐹:𝐼⟶ℕ0 → ((𝐹 “ ℕ0) ∩ (𝐹 “ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
157, 14eqtrd 2147 . 2 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = (𝐹 “ (V ∖ {0})))
164, 15syl5req 2160 1 (𝐹:𝐼⟶ℕ0 → (𝐹 “ (V ∖ {0})) = (𝐹 “ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  Vcvv 2657  cdif 3034  cin 3036  wss 3037  {csn 3493  ccnv 4498  dom cdm 4499  cima 4502  Fun wfun 5075  wf 5077  0cc0 7547  cn 8630  0cn0 8881
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1re 7639  ax-addrcl 7642  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-pre-ltirr 7657  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-ov 5731  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-inn 8631  df-n0 8882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator