Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0supp | GIF version |
Description: Two ways to write the support of a function on ℕ0. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
nn0supp | ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (V ∖ {0})) = (◡𝐹 “ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfn2 9148 | . . . 4 ⊢ ℕ = (ℕ0 ∖ {0}) | |
2 | invdif 3369 | . . . 4 ⊢ (ℕ0 ∩ (V ∖ {0})) = (ℕ0 ∖ {0}) | |
3 | 1, 2 | eqtr4i 2194 | . . 3 ⊢ ℕ = (ℕ0 ∩ (V ∖ {0})) |
4 | 3 | imaeq2i 4951 | . 2 ⊢ (◡𝐹 “ ℕ) = (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) |
5 | ffun 5350 | . . . 4 ⊢ (𝐹:𝐼⟶ℕ0 → Fun 𝐹) | |
6 | inpreima 5622 | . . . 4 ⊢ (Fun 𝐹 → (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0})))) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0})))) |
8 | cnvimass 4974 | . . . . 5 ⊢ (◡𝐹 “ (V ∖ {0})) ⊆ dom 𝐹 | |
9 | fdm 5353 | . . . . . 6 ⊢ (𝐹:𝐼⟶ℕ0 → dom 𝐹 = 𝐼) | |
10 | fimacnv 5625 | . . . . . 6 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ ℕ0) = 𝐼) | |
11 | 9, 10 | eqtr4d 2206 | . . . . 5 ⊢ (𝐹:𝐼⟶ℕ0 → dom 𝐹 = (◡𝐹 “ ℕ0)) |
12 | 8, 11 | sseqtrid 3197 | . . . 4 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (V ∖ {0})) ⊆ (◡𝐹 “ ℕ0)) |
13 | sseqin2 3346 | . . . 4 ⊢ ((◡𝐹 “ (V ∖ {0})) ⊆ (◡𝐹 “ ℕ0) ↔ ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0}))) = (◡𝐹 “ (V ∖ {0}))) | |
14 | 12, 13 | sylib 121 | . . 3 ⊢ (𝐹:𝐼⟶ℕ0 → ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0}))) = (◡𝐹 “ (V ∖ {0}))) |
15 | 7, 14 | eqtrd 2203 | . 2 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = (◡𝐹 “ (V ∖ {0}))) |
16 | 4, 15 | eqtr2id 2216 | 1 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (V ∖ {0})) = (◡𝐹 “ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 Vcvv 2730 ∖ cdif 3118 ∩ cin 3120 ⊆ wss 3121 {csn 3583 ◡ccnv 4610 dom cdm 4611 “ cima 4614 Fun wfun 5192 ⟶wf 5194 0cc0 7774 ℕcn 8878 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-inn 8879 df-n0 9136 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |