![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0supp | GIF version |
Description: Two ways to write the support of a function on ℕ0. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
nn0supp | ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (V ∖ {0})) = (◡𝐹 “ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfn2 9253 | . . . 4 ⊢ ℕ = (ℕ0 ∖ {0}) | |
2 | invdif 3401 | . . . 4 ⊢ (ℕ0 ∩ (V ∖ {0})) = (ℕ0 ∖ {0}) | |
3 | 1, 2 | eqtr4i 2217 | . . 3 ⊢ ℕ = (ℕ0 ∩ (V ∖ {0})) |
4 | 3 | imaeq2i 5003 | . 2 ⊢ (◡𝐹 “ ℕ) = (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) |
5 | ffun 5406 | . . . 4 ⊢ (𝐹:𝐼⟶ℕ0 → Fun 𝐹) | |
6 | inpreima 5684 | . . . 4 ⊢ (Fun 𝐹 → (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0})))) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0})))) |
8 | cnvimass 5028 | . . . . 5 ⊢ (◡𝐹 “ (V ∖ {0})) ⊆ dom 𝐹 | |
9 | fdm 5409 | . . . . . 6 ⊢ (𝐹:𝐼⟶ℕ0 → dom 𝐹 = 𝐼) | |
10 | fimacnv 5687 | . . . . . 6 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ ℕ0) = 𝐼) | |
11 | 9, 10 | eqtr4d 2229 | . . . . 5 ⊢ (𝐹:𝐼⟶ℕ0 → dom 𝐹 = (◡𝐹 “ ℕ0)) |
12 | 8, 11 | sseqtrid 3229 | . . . 4 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (V ∖ {0})) ⊆ (◡𝐹 “ ℕ0)) |
13 | sseqin2 3378 | . . . 4 ⊢ ((◡𝐹 “ (V ∖ {0})) ⊆ (◡𝐹 “ ℕ0) ↔ ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0}))) = (◡𝐹 “ (V ∖ {0}))) | |
14 | 12, 13 | sylib 122 | . . 3 ⊢ (𝐹:𝐼⟶ℕ0 → ((◡𝐹 “ ℕ0) ∩ (◡𝐹 “ (V ∖ {0}))) = (◡𝐹 “ (V ∖ {0}))) |
15 | 7, 14 | eqtrd 2226 | . 2 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (ℕ0 ∩ (V ∖ {0}))) = (◡𝐹 “ (V ∖ {0}))) |
16 | 4, 15 | eqtr2id 2239 | 1 ⊢ (𝐹:𝐼⟶ℕ0 → (◡𝐹 “ (V ∖ {0})) = (◡𝐹 “ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Vcvv 2760 ∖ cdif 3150 ∩ cin 3152 ⊆ wss 3153 {csn 3618 ◡ccnv 4658 dom cdm 4659 “ cima 4662 Fun wfun 5248 ⟶wf 5250 0cc0 7872 ℕcn 8982 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-inn 8983 df-n0 9241 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |